
Analyzing Cacheability in the Access Network with
HACkSAw

Claudio Imbrenda
Orange Labs

claudio.imbrenda@orange.com

Luca Muscariello
Orange Labs

luca.muscariello@orange.com

Dario Rossi
Telecom ParisTech
dario.rossi@enst.fr

ABSTRACT
Web traffic is growing, and the need for accurate traces of HTTP
traffic is therefore also rising, both for operators and researchers,
as accurate HTTP traffic traces allow to analyse and characterize
the traffic and the clients, and to analyse the performance of the
network and the perceived quality of service for the final users.
Since most ICN proposals also advocate for pervasive caching, it’s
imperative to measure the cacheability of traffic to assess the impact
and/or the potential benefits of such solutions. This demonstration
will show a both a tool to collect HTTP traces that is both fast and
accurate and that overcomes the limitations of existing tools, and a
set of important statistics that can be computed in post processing,
like aggregate/demultiplexed cacheability figures.

Categories and Subject Descriptors
C.2.3 [COMPUTER-COMMUNICATION NETWORKS]: Net-
work Operations—Network monitoring

Keywords
Cacheability; caching; high performance; http analysis; live traffic
monitoring

1. INTRODUCTION AND MOTIVATION
Web content is nowadays skyrocketing, causing significant ad-

ditional infrastructure costs to network operators, therefore, an ac-
curate characterization of the traffic and the users is a fundamental
prerequisite for strategic decisions. Moreover, most ICN proposals
advocate for pervasive caching; a correct measure of cacheability
and traffic reduction is therefore fundamental to assess the impact
and/or the potential benefits of such solutions.

Characterization of web traffic usually means logging the IDs of
the requested objects along with a timestamp; some further details
can be collected almost effortlessly, like the content type and in
some cases the size of the object. The methodology of collection
varies, and the accuracy of the results also varies consequently.

The next step is analysis or post processing of the logs, in order to
extract the required statistics. Cacheability and traffic reduction, as

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
ICN’14, September 24–26, 2014, Paris, France.
ACM 978-1-4503-3206-4/14/09.
http://dx.doi.org/10.1145/2660129.2660135 .

introduced in [1, 4], are very important metrics, as pointed before.
In order to quickly and accurately calculate those values, a log is
needed containing all the requested objects, the time of the request
and the real amount of traffic generated.

There are already some tools that perform HTTP traffic analy-
sis [3, 6, 7, 9], only some of which are publicly available. The per-
formace and the accuracy of the publicly available tools is in gen-
eral not satisfactory for some kinds of traffic analysis, especially in
relation to cacheability.

Tstat [5] performs a packet-level analysis of HTTP connections,
this allows it to operate quickly and with a reduced memory foot-
print, but on the other hand it misses many details. In most cases
the Content-Length field of the object is missed because it didn’t
appear in the first packet of the reply.

Bro is an intrusion detection system, meant to protect a single
host, and not to be executed at line speed in an operational network;
it is however used in the research community to generate traces of
HTTP traffic [2, 8].

Table 1 shows a comparison of HACkSAw with the other pub-
licly available tools performed on the same hardware and on the
same 1-hour packet-level trace; 0-length replies are those replies
to HTTP requests where the length of the content is either zero
or missing, and CPU is the cumulative runtime of all threads. It

Tool Detected CPU Memory 0-length
Requests [sec] [GB] replies

Tstat 2 531 210 445 0.3 1 128 109
bro 2 559 056 8033 4.2 424 355
HACkSAw 2 426 391 368 5.8 328 465

Table 1: Performance of bro, Tstat and HACkSAw.

can be seen that bro is too slow and tstat is inaccurate. In both
cases both bro and Tstat only report the Content-Length field from
the HTTP headers. There are many cases in which such header is
unavailable; in cases where the chunked HTTP Transfer-Encoding
was used, for example, the total size of the object is not known in
advance. HACkSAw manages to be both fast and accurate thanks
to its simple, yet effective, implementation; some key features in-
clude:

• the full TCP stream is reconstructed, therefore the full HTTP
headers are available and the real size of the downloaded ob-
ject is available.

• no per-packet pattern matching is performed to identify HTTP
requests, the payload is skipped, thus significantly lowering
the CPU consumption



• multithreading; can scale up almost linearly with more pro-
cessors

While our tool does require a significant amount of memory, it was
successfully used uninterruptedly over a period of one month to
collect statistics on a real access network (see [4]).

Only clear-text connections can be analysed, as obviously no dis-
section of SSL traffic is possible. Although the amount of HTTPS
traffic is rising with time, especially since popular websites like
Facebook or YouTube started to push in that direction, and there-
fore potentially rendering this approach useless in the long run, we
measured in our observations that, currently, only approximately
15% of the total HTTP traffic is HTTPS.

2. STATISTICS
In addition to the usual statistics collected by other tools, like for

example the client ID, the object ID, the hostname or the User-
Agent string, HACkSAw also collects many statistics that other
tools neglect, like the time between the HTTP request and the HTTP
reply or the first byte of content; the indication whether cookies or
ETAG headers were used, the size of the headers, and the byte-
range in case of range(partial) request.

The results collected by the tool allow to easily compute aggre-
gate statistics as shown in [4]; those aggregate statistics are calcu-
lated with a simple post-processing of the output log of the tool,
which is in plain text. The relevant statistics that can be calculated
easily are:

• Request cacheability (the share of HTTP requests that can
potentially be cached in a given timeframe)

• Traffic reduction (the percentage of actual traffic potentially
saved assuming all cacheable items are pre-fetched during
off-peak hours)

• Virtual cache size (the minimum cache size needed to cache
all cacheable content, assuming perfect “oracle” replacement
strategy)

• Average number of HTTP requests per connection (many
connections perform more than one HTTP request, as per
HTTP/1.1)

• Share of requests with cookies and/or ETAG (ETAG headers
potentially indicate different content for the same URL; the
presence of cookies generally hinders cacheability)

• download completion of requests (for each request, the per-
centage of bytes of the object actually downloaded by the
client; values under 100% thus indicate that the object was
not downloaded completely)

• average actual throughput and average latency of requests
(time between the first and the last byte of content, and be-
tween start of the HTTP request and the first byte of content,
respectively)

3. DEMONSTRATION
The tool will be run live on the conference network, as it is as

close to the actual access network as we can get; relevant statis-
tics will be computed from the anonymized output of the tool and
shown almost live, with a small delay to allow for processing.

Some of the statistics that will be shown (apart from the classical
ones like total traffic, number of HTTP requests, etc), are those
presented above in section 2.

10%
20%
30%
40%
50%

10%
20%
30%
40%
50%

100MB

1GB

10GB

100GB

1TB

30 May21 April 05 May 19 May

Figure 1: Timeseries of Requests cacheability (top), Traffic re-
duction (middle) and Virtual cache size (bottom); 1 day aggre-
gate (thick black line) and 1 hour aggregate (thin blue line) cal-
culated on the data gathered in [4].

All statistics will be computed over different timescales, from 1
hour to 1 day; figure 1 shows an example of some of the presenta-
tion of the statistics that will be shown in the demo.

4. REFERENCES
[1] B. Ager, F. Schneider, J. Kim, and A. Feldmann. Revisiting

Cacheability in Times of User Generated Content. In Proc.of
IEEE INFOCOM, 2010.

[2] B. Ager, F. Schneider, J. Kim, and A. Feldmann. Revisiting
cacheability in times of user generated content. In INFOCOM
IEEE Conference on Computer Communications Workshops ,
2010, pages 1–6, March 2010.

[3] A. Finamore, M. Mellia, M. Meo, M. Munafo, and D. Rossi.
Experiences of internet traffic monitoring with tstat. IEEE
Network Magazine, May 2011.

[4] C. Imbrenda, L. Muscariello, and D. Rossi. Analyzing
cacheable traffic in isp access networks for micro cdn
applications via content-centric networking. In Proc.of ACM
ICN, 2014.

[5] M. Mellia and al. http://tstat.tlc.polito.it.
[6] V. Paxson. http://www.bro.org.
[7] B. Ramanan, L. Drabeck, M. Haner, N. Nithi, T. Klein, and

C. Sawkar. Cacheability analysis of HTTP traffic in an
operational LTE network. In In Proc. of WTS, 2013.

[8] F. Schneider, B. Ager, G. Maier, A. Feldmann, and S. Uhlig.
Pitfalls in HTTP Traffic Measurements and Analysis. In Proc.
of PAM, 2012.

[9] S. Woo, E. Jeong, S. Park, J. Lee, S. Ihm, and K. Park.
Comparison of caching strategies in modern cellular backhaul
networks. In Proc. of ACM MobiSys, 2013.


