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ABSTRACT
Web content coming from outside the ISP is today skyrocketing,
causing significant additional infrastructure costs to network oper-
ators. The reduced marginal revenues left to ISPs, whose business
is almost entirely based on declining flat rate subscriptions, call for
significant innovation within the network infrastructure, to support
new service delivery.

In this paper, we suggest the use of micro CDNs in ISP access
and back-haul networks to reduce redundant web traffic within the
ISP infrastructure while improving user’s QoS. With micro CDN
we refer to a content delivery system composed of (i) a high speed
caching substrate, (ii) a content based routing protocol and (iii) a
set of data transfer mechanisms made available by content-centric
networking.

The contribution of this paper is twofold. First, we extensively
analyze more than one month of web traffic via continuous mon-
itoring between the access and back-haul network of Orange in
France. Second, we characterize key properties of monitored traf-
fic, such as content popularity and request cacheability, to infer po-
tential traffic reduction enabled by the introduction of micro CDNs.
Based on these findings, we then perform micro CDN dimension-
ing in terms of memory requirements and provide guidelines on
design choices.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Network communications

Keywords
Information-Centric Networking; Network Traffic Measurements;
Web caching; Content-Delivery Networks; Telco CDN

General Terms
Performance; Measurement

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICN’14, September 24–26, 2014, Paris, France.
Copyright 2014 ACM 978-1-4503-3206-4/14/09 ...$15.00.
http://dx.doi.org/10.1145/2660129.2660146.

1. INTRODUCTION
In recent years, we have assisted to significant deployments of

web-based content delivery solutions within ISP networks, with the
aim to deliver a range of services directly managed by the ISP itself.
Some examples are video on demand (VoD) and subscriber VoD
(SVoD). Broadcast TV, traditionally delivered across IP multicast
channels, has also been made available through web-based portals
supported by various kinds of CDN technologies. The spread of
web-based content delivery solutions has multiple root causes, e.g.
enhanced flexibility and ease of access from a vast set of user ter-
minals, mostly mobile.

In particular, today SVoD consumers expect to the able to access
video from any device inside and outside the home (TV, HDTV,
smart-phones, tablets, media players), and also ask for high levels
of QoS. Traditional IP multicast fails to satisfy such a large set of
requirements, leading ISPs to build their own video services on top
of CDN systems. Further, CDNs usage has been fostered by the
skyrocketing growth of Internet traffic volumes, mainly driven by
video services. In fact, traffic volumes are no more carrying preem-
inently P2P file sharing applications, but video-based services with
significant QoS requirements and often based on a third-party (e.g.
Netflix) monthly subscription.

Today model, relying on third-parties to provide web services,
whose quality depends on someone else network infrastructure (one
or multiple ISPs), present various business weaknesses. Indeed, ap-
plications like file sharing or VoIP (e.g. Skype) respectively gener-
ate elastic flows with soft QoS constraints or negligible traffic, not
creating additional network costs.

For video-centric services, the relation between investments and
revenues tends to be unbalanced when third-party content providers
do not recognize any additional revenue to the ISPs which, instead,
shoulder investment and operational costs to deliver additional traf-
fic shares at no incremental revenue. The end customer is not ea-
ger to pay more to solve the dispute among the two parties if this
requires to loose Internet access flat rate. The dispute involving
Netflix and Comcast, Verizon and AT&T in the USA is one good
example displaying the difficulties and frictions in this market [26].
In terms of network resource utilization, IP multicast, nowadays
considered as obsolete, offers a valuable advantage over web based
systems for TV broadcasting. In fact, IP multicast operates within
the network while web based systems are today installed in the PoP
(point of presence) and assume to reach the end user via a fully
transparent high capacity network that ISPs have low business in-
centive to guarantee.

In this paper, we propose a novel approach for ISP content de-
livery, referred to as micro CDN (µCDN), combining the service
flexibility of web based CDNs with efficient redundant traffic re-



duction of IP multicast. A µCDN makes use of small storage that
can work at high speed as can take advantage of fast memories.
A few technologies suitable to achieve this goal already exist, i.e.
JetStream [24], AltoBridge [5] and also Open Connect [27]. How-
ever, they suffer from the following limitations: (i) they provide no
standardized architecture, (ii) do not interoperate and (iii) do not
support all kinds of web content.

We believe that a promising candidate to satisfy the aforemen-
tioned goals is the content-centric networking (CCN) architecture
(a.k.a. NDN) [21]. Indeed, by embedding a service agnostic con-
tent caching into the network architecture, CCN may provide a
common underlying network substrate for the deployment of next
generation CDN systems.

The remainder of the paper is organized as follows. Sec.2 sur-
veys related work. In Sec.3, we introduce the network setup, the
dataset and the monitoring tool, HACkSAw, developed to analyze
web data traffic. In Sec.4, we provide an extensive analysis of the
dataset and a thorough statistical characterization of the key per-
formance indicators required to guide µCDN system design. In
Sec.5, we gather a number of trace driven simulations of different
caching systems, while Sec.6 presents the general network design,
including feasibility considerations tailored to CCN. Finally, Sec.7
concludes the paper.

2. RELATED WORK
In the last few years, a significant body of work has tried to mea-

sure the relation between the amount of resources and efforts (pain)
to achieve the gains promised by CCN[18, 14]. Most of these works
are based on network simulations in some very specific scenarios,
none of them taking into account the ISP infrastructure, but focus-
ing on content placement and caching performance no deeper than
the PoP.

Other recent works, based on network experimentation, have
shown [8] the significant gains of CCN in some relatively down-
sized network settings. The drawbacks of computer simulation and
network experimentation are that, while being valuable, they do not
allow to generalize the results for realistic workloads, difficult to
model and to synthesize in general scenarios. Analytical models of
such systems [7, 9] allow to quickly evaluate the relation between
QoS, network capacity and users’ demand; however, current mod-
els either fail to provide reliable performance predictions or must
be tuned, a posteriori, using a data sample [28],[34].

A common assumption to the evaluation of caching systems per-
formance is to assume that content requests are generated under the
IRM (Independent Reference Model), with a request distribution
following a Zipf law. Considerable measurement efforts have been
devoted to provide input to this workload in static settings, while
very few consider the catalog dynamics over time. Characteriza-
tion of video catalogs has especially attracted significant attention,
from YouTube crawling [19], to measurement at a campus [38] or
ISP [28, 34], just to cite a few. Focusing on YouTube traffic, [28],
[34] show that IRM assumption may yield to a significant under-
estimation of the achievable caching gains. However, the main fo-
cus of [34] is to propose a fine grained characterization of the data,
rather than assessing the impact on the expected CCN gain (even a
lower bound), as we do in this work.

In this paper, we propose a different approach based on network
measurements: we install a live web probe on some links between
the access and back-haul network serving fiber customers in the
Orange network in France. Then, we evaluate the amount of redun-
dant traffic flowing through the back-haul and the required mem-
ory to install within customer premise equipments (CPEs) and edge
router line cards.

Figure 1: ISP network fiber access and back-haul.

Other work have measured cache performance for video appli-
cations [1], [2] but none of the previous work have considered also
web content size which has, however, a significant impact on the
amount of required storage to install in the network. Web content
size is often neglected in previous work as which are based on the
analysis on HTTP requests only, neglecting all HTTP replies. The
most notable exceptions are [32] and [36] which use a measurement
methodology similar to ours and analyze either HTTP request and
replies.

3. WEB TRAFFIC MONITORING
This section introduces our traffic monitoring infrastructure, de-

ployed within Orange France ISP network, the dataset under study
and HACkSAw, our monitoring tool.

Our methodology is based on deep packet inspection (DPI) of
the HTTP protocol and does not apply to HTTPs, where all bytes
transferred across a TCP connection are encrypted. In our data
set we observed 15% of all traffic on HTTPs and this statistic is
expected to grow in the future as HTTP 2.0 specifies encryption
by default. Considering the highly predominant usage of HTTP
over HTTPs in our dataset the results presented in this paper are
valuable to draw significant conclusion about cache performance at
the network edge.

3.1 The monitoring infrastructure
Along the path between a PoP and the end customer, the moni-

toring probe can be placed at different network segments, ranging
from the PoP or the broadband access server (BAS), where one ob-
serves the largest user fan-out, to the access network, where traffic
is captured at a finer granularity. Our initial choice has been to per-
form monitoring of web traffic over the network segment between
access and back-haul for fiber to the home users served by a GPON
(Gigabit Passive Optical Network).

The promising findings over such dataset captured between the
access and the back-haul have convinced us to permanently install
the probe therein. As shown in Fig.1, each GPON consists of an
OLT (optical line terminal), installed within a CO (central office)
and accommodating, for instance, 16 line cards in a high density



non blocking chassis. Line cards usually have a line rate of 1Gbps
to 10Gbps and each one typically serves up to 64 users connected
to a single optical line by a X64 optical splitter terminated by an
ONT (optical network terminal) in the home. Each OLT has a back-
haul link towards the local loop consisting of a given number of IP
edge routers. Our probe (described in Sec.3.3) is installed at two
such back-haul links in Paris, arriving at the same edge router as
depicted in Fig.1.

3.2 The dataset
The probe captures every packet flowing on the wire and makes

L3, L4 and L7 processing to collect a wide set of statistics at the
different layers. In the paper we focus on L7, namely HTTP traffic,
to obtain the relevant part of the paper’s dataset: all HTTP requests
and corresponding replies.

Total Daily Average
Distinct users 1478 1218
HTTP requests 369 238 000 8 586 000
HTTP data volume 37TB 881GB
Distinct objects 174 283 000 4 956 000

Table 1: Dataset summary: April 18 to May 30 2014.

Each detected HTTP request/reply transaction is recorded with
a number of fields and associated statistics; namely time-stamp,
user ID, object ID, Content-Length[15], and actual transaction length
over the wire. We collect 42 days of data, from midnight April 18 to
midnight May 30, 2014. Tab.1 reports a summary of such dataset.
Details about the methodology used to process captured traffic and
to obtain relevant statistics are provided hereafter.

Ref Duration Clients Requests Distinct HTTP
objects traffic

our dataset 42 days 1500 369M 174M 37TB
[2] 14 days 20k – – 40TB
[33] 14 days 20k – – 42TB
[16] 1 day 200k 48M 7M 0.7TB
[36] 8 days 1.8M 7.7G – 256TB
[32] 1 day 42M – 12TB
[14] 1 day – 6M – –

Table 2: Overview of the dataset in this and related work.

Dataset of work inherent to caching or workload characteriza-
tion, can either be request logs from servers, [37, 4, 14], gathered
via active crawling techniques of popular portals [19, 11] or via
passive measurement methodology [32, 36] as we do in this work.
A comparison of some basic information about the dataset consid-
ered in this and related work is given in Tab.3.2, where it can be
seen that our dataset has a significant span in terms of time, re-
quests and distinct objects seen.

3.3 HACkSAw: the monitoring tool
We describe here HACkSAw, the continuous monitoring tool we

have developed to collect our dataset and to process it in order to
derive the statistics presented in next sections.

We recall that the measurement probe is installed at back-haul
links with line cards ranging from 1Gbps to 10Gbps. Packets on
the wire must be, then, captured and timestamped accurately at any
of such mentioned line rates to prevent malfunctioning of the pro-
cessing of the different protocol layers: IP, TCP/UDP, HTTP. The
probe also requires to be installed in a network location guaran-
teeing symmetric routing, to carefully capture both directions of a

Tool Detected CPU Memory 0-length
Requests [sec] [GB] replies

Tstat2.4 2 531 210 445 0.3 1 128 109
Tstat2.3 1 348 642 345 0.4 N.A.
bro 2 559 056 8033 4.2 424 355
HACkSAw 2 426 391 368 5.8 328 465

Table 3: Performance of bro, Tstat and HACkSAw.

TCP connection and requests and replies of an HTTP transaction
(possibly pipelined in a single TCP connection, i.e. HTTP/1.1).

Recent work on web caching within the radio mobile backhaul
in New York metropolitan area [32] and in South Korea [36] have
used proprietary tools satisfying the mentioned requirements. Un-
fortunately, none of these tools is publicly available.

Conversely, popular open source tools like bro [29] and Tstat
[25] do not satisfy all necessary requirements. Indeed, bro, con-
ceived as an intrusion detection system, is not suitable for high
speed monitoring because it applies regular expressions on each
packet to detect signatures of known threats, and therefore results
to be very slow. Tstat, instead, is faster and accurate in analyz-
ing TCP connections, but inaccurate in analyzing HTTP transac-
tions. Consequently, both tools turn out to be not satisfactory for
our needs.

For this reason, the analysis presented in this paper is based on a
novel tool, called HACkSAw and that we developed to accurately
and continuously monitor web traffic in a modern operational ISP
network, at any line rate, for any workload.

A comparison of the performance of the different tools is re-
ported in Tab.3, using the same one hour trace as benchmark. We
experiment with two version of Tstat, since its last version (released
May 6th, 2014) addresses some (though not all) shortcomings re-
lated to HTTP traffic analysis. bro detects about twice as much
HTTP requests with respect to Tstat (v2.3), using 10 times more
memory and running over 20 times slower, whereas HACkSAw
manages to be almost as accurate as bro, and almost as fast as Tstat.
Tstat (v2.4) catches most of the transactions, though it still fails to
match the requests with the reply, and is hence unusable to reports
the size of the object (at least when the Content-Length header is
not within the first IP packet of the reply, which happens more than
30% of the cases in our benchmark). As such, if Tstat (v2.4) ad-
dresses shortcomings in terms of HTTP transactions recall, it still
fails to provide a reliable measure of object size.

HACkSAw implements L3 packet collection ( and reordering,
when needed) and L4 flow matching and reconstruction, so that a
TCP connection is properly tracked and analyzed. Scalability is
achieved via efficient non-blocking multithreaded design, available
in none of previous tools, enabling deployment of the probe in any
access or back-haul link. At flow termination (after a TCP half
close or an inactivity timeout), the payload stream is handed to one
of the several consumer threads that are in charge of HTTP trans-
actions analysis.

Accuracy is, thus, achieved via full payload analysis and full
stream reconstructions (so that memory usage is close to that of
bro). In the network setup previously described, HACkSAw runs
on an IBM server with 2 quad-core Intel Xeon CPU E5-2643 at
3.30GHz with 48GB of RAM each, for a total of 96GB of RAM
memory. The server is equipped with a Endace DAG7.5G4 card,
allowing to capture packets from 4 Gigabit links simultaneously,
allowing us to monitor 2 full-duplex Gigabit links. HACkSAw logs
several information for each HTTP transaction namely:



• request timestamp, accurately given by the Endace DAG
card;

• user identifier, computed as the obfuscated MAC address of
their home router;

• object identifier, calculated as a hash of the full URL con-
catenated with the ETAG[15], when present;

• reported object size, from the HTTP Content-Length header,
when present or computed from the chunk sub-headers in
case of chunked transfer-encoding;

• actual object size, computed as the actual amount of unique
(i.e., excluding TCP retransmissions) bytes on the wire, that
may be lower than the reported object size in case of aborted
transfer.

4. WEB TRAFFIC CHARACTERIZATION
Traffic characterization is an essential prerequisite of traffic engi-

neering: network dimensioning and upgrading lie upon the knowl-
edge of the relation between three entities: traffic demand, network
capacity and quality of service. What makes traffic characterization
a difficult task is the stochastic nature of Internet traffic, complex
to synthesize via simple models.

In literature, a wide range of models exist, varying model ab-
straction and related complexity according to a more microscopic
or macroscopic analysis of network dynamics. In this paper, we
avoid a detailed representation of a network of caches, which turns
out to be analytically intractable even for a simple tandem cache
and simple workloads [17]. We rather prefer a simple characteriza-
tion of web traffic, based on key system properties and applicable
to general in-network caching systems. Such model abstraction,
assuming an independent reference model (IRM), might be lever-
aged for the dimensioning of a micro CDN. The key factors im-
pacting the performance of an in-network caching system and that
our model takes into account are:

• the timescale at which content popularity may be approxi-
mated by an independent reference model (IRM) (Sec.4.1);

• the content popularity at the given timescale (Sec.4.2).

From their characterization, we later infer in Sec.5.1 the minimum
useful amount of memory to embed in the home network and in
edge routers in the Micro CDN architecture.

4.1 Timescale analysis
First, we define some statistics that will be used throughout the

section: catalog, cacheability, traffic reduction. The catalog is the
set of distinct objects requested in a given time interval. As intro-
duced in [2], the cacheability is a statistic indicating the fraction
of requests for objects requested more than once in a given time
interval. The first request of an object is not considered cacheable,
whereas all its subsequent requests in the same time interval are.
The resulting definition of cacheability is

Nr −No
Nr

= 1− No
Nr

(1)

where Nr is the number of requests observed in the given time
interval, and No is the number of unique distinct objects observed
(the cardinality of the catalog).

We also define the traffic reduction, a statistic measuring the
maximum amount of traffic that can be potentially saved across a

link over a given time interval as a consequence of content cacheabil-
ity. Traffic reduction is defined as

R−Ru
R

= 1− Ru
R

(2)

where R is the total traffic, and Ru is the uncacheable traffic, both
measured in bytes. Before presenting observations from the net-
work probe, we use a simple explanatory model to show that mea-
suring content popularity at a timescale (as an example, over a large
time window), where the IRM assumption does not hold, may lead
to wrong predictions in terms of memory requirements.

We divide the time axis in windows of size T > 0, Wi =
[iT, iT + T ), and assume that, in each time window Wi, objects
in content catalog Ai are requested following a Poisson process of
rate λ, with Ai ∩ Aj = ∅ for all i, j : i 6= j. The average object
size is σ bytes. Ai is Zipf distributed with parameters α,N , i.e. a
content item of rank k is requested with probability qk = ck−α,
k ∈ {1, . . . , N}, |Ai| = N .

By using the modeling framework developed in [7] for an LRU
cache of size x in bytes, we know that if T >> xαg, with 1/g =
λcσαΓ(1− 1/α)α the cache miss probability for an object of rank
k tends to exp{−λqkgxα}.

However, if one estimates the content popularity as the time av-
erage acrossm contiguous time windows, the estimated miss prob-
ability would be exp{−λqkg(x/m)α}. Indeed, the right cache
performance measured across m contiguous time windows of size
T is still exp{−λqkgxα} resulting in an overestimation factor m
of the required memory, for the same miss ratio.

In this section we estimate the timescale over which the IRM
model can be used to estimate cache performance without using
complex measurement-based models, e.g. [28],[34].

OBSERVATION 4.1. In order to exploit a IRM cache network
model for system dimensioning, one needs to estimate the small-
est timescale, referred to as “cutoff” timescale at which the IRM
assumption holds. As a consequence, above the cutoff timescale,
every new content request gives a negligible contribution to cata-
log inference.

In Fig.2(a),(b) we plot cacheability and traffic reduction as com-
puted over our dataset at different time windows: from one hour to
an entire contiguous week at incremental steps of one hour. The
statistics are also computed starting at different time instants, de-
layed by one hour each. We observe that the two statistics have a
cutoff scale above which they reach a plateau. In Fig.2(c), we report
the time required for the cacheability to attain percentiles (namely,
the 75%, 90%, 95% and 99%) of the long term value: it can be seen
that 90% of the traffic reduction are attained in less than 24 hours,
irrespectively of the start time.

OBSERVATION 4.2. The cutoff scale is hard to be measured as
it changes on a daily basis as a function of many factors that cannot
be rigorously quantified. However, we observe that for practical
purposes aggregate web traffic would benefit for caching no more
than a daily content catalog.

In Fig.2(a),(b) we also observe that the cacheability stabilizes at
about 47% while traffic reduction amounts to almost 37%. These
values provide a first rough estimation of the opportunities to cache
data currently available within the ISP network at relatively low
user fan-out. While statistics just presented provide insights on the
potential gains achievable by caching a daily content catalog, we
now investigate temporal evolution of the catalog.

To this aim, we introduce a measure of auto similarity based on
the Jaccard coefficient, that indicates the proportion of objects in
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Figure 2: Cumulative cacheability and traffic reduction, starting from different hours and for various timespans.
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Figure 3: Jaccard auto correlation functionR∆T (k).

common between two given sets: J(A,B) = |A∩B|
|A∪B| (If A = B =

∅ then J(A,B) , 1. Clearly, 0 ≤ J(A,B) ≤ 1. We then define
the Jaccard auto correlation function as

R∆T (k) =
1

n

n∑
i,j:|i−j|=k

J(Ci∆T , Cj∆T ) (3)

being Ci∆T the content catalog measured over the time window
i∆T . Fig.3 shows R∆T (k) for k = {0, . . . , 168}, ∆T = 1hour,
during one working week in May 2014 (showing standard deviation
as error bars). An interesting conclusion can be drawn.

OBSERVATION 4.3. The catalog is weakly auto-correlated, as
R∆T (k) falls from 100% to less than 5% and it completely regen-
erates asymptotically, as R∆T (k) → 0 when k → ∞. A periodic
component with period of about 24 hours is also present as a result
of users’ daily routine.

Finally, we show that catalog show a night/day effect in Fig.4,
that reports J(Ck0∆T , C(k0+k)∆T ), with ∆T = 1hour and k0 <
k ≤ 72, for multiple k0 = {0, 2, 4, 6, 8}. The figure shows that
the catalog has different properties during off peak hours (k0 =
{0, 2, 4}) than peak hours (k0 = {6, 8}). Off-peak hours are char-
acterized by content items that unlikely appears again in the fu-
ture, while on-peak content items show periodic components of 24
hours.
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Figure 4: Jaccard coefficient, J(Ck0∆T , C(k0+k)∆T ), k0 =
0, 2, 4, 6, 8.

4.2 Content popularity estimation
Hereafter, we present a model of content popularity estimated

over 24 hours. According to the observations reported above, the
timescale of interest turns out to be approximately defined by re-
moving the night period, i.e. the off peak phase. This may be a
complex task as the off peak phase changes on a daily basis. Nev-
ertheless, we observe that the off peak phase has statistically weak
impact on the overall distribution as it carries samples in the tail of
the popularity distribution at low rate, so that 24 hours can be used
as timescale. We test the empirical popularity against various mod-
els and find the discrete Weibull to be the best fit with shape around
0.24 (long tailed). In Fig.5, we report the empirical popularity dis-
tribution with corresponding 95% confidence bands (see [20] for
similar analysis). We also plot, in red, the model fit to the available
sample with 95% confidence bands. By means of extensive tests
on this model we assess accuracy over all 24 hours samples on our
data set. It follows that:

• for the tail of the distribution, a simple discrete Weibull passes
a χ2 goodness of fit test [12], with p-values exceeding 5%
significance level, while

• the good model for the entire distribution turns out to be
trimodal with three components: a discrete Weibull for the
head of the distribution, a Zipf for the waist and, a Weibull



Figure 5: Empirical web content popularity and model fitting
with corresponding confidence bands.

again for the tail, i.e. f(k) =

φ1
β1

λ1

(
k

λ1

)β1−1

e−(k/λ1)β1
k < k1

φ2

kα2
k ∈ [k1, k2]

φ3
β3

λ3

(
k

λ3

)β3−1

e−(k/λ3)β3
k > k2

with parameters λ1, β1, α2, λ3, β3, φ1, φ2, φ3 ∈ R+; k1, k2 ∈
N. The parameters have been estimated by using standard
maximum likelihood (ML) applied to the piecewise function
f(k). The set of parameters of each piece of f(k) is esti-
mated independently to the others in order to fix the shapes
exponents β1, α2, β3 and the scale factors λ1, λ3. An ML
estimator is not available for the entire distribution and we
therefore use the method of moments to determine φ1, φ2, φ3.
The procedure can be iterated to obtain a better estimation by
running ML first and MM afterwards. In our samples, after
few iterations (e.g. four) the parameters stabilize to station-
ary values that we have reported for one day in Fig.5 where
β1 = 0.5, α2 = 0.83, β3 = 0.24.

Interesting conclusions can be drawn from our popularity char-
acterization. In literature, the majority of analytical models assume
a Zipf distribution with shape α < 1 for the entire distribution. Re-
mark that, if the same Zipf law characterizing the waist is prolonged
all over the support of the distribution, a finite support, correspond-
ing to a content catalog estimation, must be imposed. Indeed, the
miss probability of a cache (LRU or LFU) under Zipf requests with
α < 1 is a function of the ratio between the cache and catalog sizes,
e.g. for LFU it is 1− (x/N)1−α ([22]).

Cache performance would then depend on the ratio between cache
and content catalog size, while it is a function of cache size only

under the more precise Weibull tail fit that we made. More, the car-
dinality of the catalog, N , is estimated with unbounded confidence
intervals (see Fig.5), whereas all Weibull’s parameters can be esti-
mated with arbitrary low error, by increasing the size of the sample.
As a consequence, an overestimation of the catalog size by a given
factor under the all-Zipf model would lead to memory over-sizing
of the same factor for a given target miss ratio.

Conversely, the miss ratio under Weibull requests ([23]), e.g. of
an LRU cache, can be estimated with arbitrary precision by increas-
ing the size of the sample to estimate the popularity law. Hence, we
derive that

OBSERVATION 4.4. Accurate content popularity characteriza-
tion is fundamental to drive a correct cache system dimensioning.
Approximate models based on (i) all-Zipf assumption, (ii) possibly
fit over long time scales, coupled to (iii) IRM model assumptions,
may lead to excessively conservative results, and ultimately to mis-
guided system design choices.

5. TRACE DRIVEN SIMULATIONS
In the following, we present some realistic simulations driven by

our dataset. The goal is to evaluate the amount of memory required
within the back-haul to absorb cacheable traffic and to assess the
accuracy of the model introduced in previous section for the di-
mensioning of a micro CDN system.

5.1 Single LRU cache at edge router
The first set of simulations is based on an LRU cache installed

at the probe and driven by real users’ requests. We simulate a LRU
cache with different sizes and measure (i) the average hit ratio, (ii)
the potential traffic savings over two timescales (1 hour and 1 day).
The LRU cache simulates a transparent cache: a web object is
stored in chunks, so that in case of a cache miss, only the miss-
ing chunk is requested. A following request for a bigger part of an
object partially present in cache generates another miss, but only
for the missing part of the object.

We consider sizes of 1GB, 10GB, 100GB and 1TB, and never
explicitly flush cache content. Performance metrics are reported
in Fig.6(a),(d) and compared with two additional systems obtained
by shuffling all the requests on a hourly and daily basis, reported
in Fig.6(b),(e) and Fig.6(c),(f) respectively. Request shuffling is
useful to remove time correlation, which has huge impact on cache
performance as already discussed in Sec.4 (i.e., shuffling produces
a workload closer to that of IRM model).

From the simulations we see that if the cache is big enough
(1TB), time correlations has not impact on performance. For medium
or small caches instead, time correlation affects significantly per-
formance as hit ratios and saved traffic, twice as much in presence
of temporal locality of requests.

We now assess memory requirements, showing statistics that are
gathered in an online fashion by our probe. We introduce an ad-
ditional metric, the virtual cache size, defined as the sum of the
total observed sizes of the cacheable objects. Such additional met-
ric, not accounted for by models, allows to quantify the effect of
incomplete downloads (e.g. as an effect of user impatience). Since
many objects, especially the largest ones, are not always entirely re-
quested, we define the size of an object as the largest size observed
on-wire for the given object.

Fig.7 plots cacheability (top row), traffic reduction (middle row)
and virtual cache size (bottom row), over more than one month in
2014, over hourly and daily timescales. Different system config-
urations are arranged by columns: namely, we either assume that
a single cache is installed within at the OLT level (left column),
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(a) Hit ratio.
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(b) Hit ratio, shuffling hourly.
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(c) Hit ratio, shuffling daily.

0%

5%

10%

15%

20%

25%

30%

35%

40%

 18
April

22 30
May

21
April

05
May

19
May

1TB
100GB

10GB
1GB

(d) Saved traffic.
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(e) Saved traffic, shuffling hourly.
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(f) Saved traffic, shuffling daily.

Figure 6: LRU cache simulations: behavior with one hour averages (left side) and the general view of the whole dataset with daily
averages (right side).

or that caches are deployed only within ONT in the home of each
user (middle column), or that caches are deployed at both ONT and
OLT levels (right column). The OLT-caching scenario in the left
column of Fig.7(a),(d),(g) is striking: with a little more than 100GB
of memory, 35% of average traffic can be saved for a user fan-out
equal to 2048. In the ONT-caching scenario, only duplicated re-
quests coming from the same users are filtered by the cache: in
this case, an average memory size of about 100MB (per user, to-
talizing 200GB given the user fan-out) reduces user traffic by 25%,
corresponding to a same level of load reduction in the GPON ac-
cess. Finally, the last column of figures, Fig.7(c),(f),(i), shows that
employing caches at both OLT and ONT level, the ISP network
would benefit from 25% load reduction in the GPON and 35% on
back-haul links, while improving the latency for all users.

6. µCDN DESIGN CHOICES
The above results confirms the potential caching benefits arising

from the deployment of limited additional memories. In this sec-
tion, we comment on implications of the above findings in terms of
the architectural design that is best suited to actually leverage this
caching potential.

6.1 CCN as uniform CDN substrate
Transparent caching is today a very useful technique to reduce

redundant traffic while, at the same time, providing higher levels
of QoS to the users. All the different existing solutions cited [3,
30, 5, 27], are based on a common set of principles. They lever-
age DPI (Deep Packet Inspection) to identify and reconstruct con-
tent on-line. Once the content is identified, it is split into identifi-
able data chunks, corresponding to proper networking datagrams,
that are cached and routed across the cache infrastructure. Most of
these technologies are proprietary and their design and implemen-

tation details may only be obtained partially through non disclosure
agreements. The challenge of integrating and inter-operate vari-
ous CDN technologies into one inter-operable infrastructure has
led to the creation of the standardization working CDNi at IETF
[35]). However, such standardization activity struggles with at-
tracting the main CDN players, so raising concerns about the suc-
cess of the integration process. By embedding a service agnostic
content caching into the network architecture, Information Centric
approaches appear to be more promising candidates to provide a
common underlying network substrate for the deployment of next
generation CDN systems.

6.2 CCN communication model
Going one step further in terms of architectural details, the key

characteristics of the communication model of today CDNs are put
in perspective with evolutionary aspects of CCN in [10]. The main
CDN components are (i) DNS and content based routing, (ii) HTTP
and chunk-based data transfer (iii) in-network caching. Note that a
commercial CDN also includes a large set of analytics to log ser-
vice quality and monitor the CDN performance.

If we replace the data plane of a CDN system with CCN, the
main innovation introduced is to overcome the current misuse of
HTTP as a content-centric transport protocol and to integrate a
chunk-based connectionless receiver driven transport coping with
in-network caching.

Let us describe CCN communication model more in detail ([21]).
The founding principle of CCN is to enrich network layer primi-
tives with content awareness so that routing, forwarding, caching
and data transfer functions are performed on content names rather
than on location identifiers (IP addresses). Content items are di-
vided into a sequence of chunks uniquely identified by a name and
a permanent copy is stored in one or more repositories. The nam-
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Figure 7: Time evolution of hourly and daily statistics; by rows cacheability, traffic reduction and virtual cache size are reported
respectively in the three cases: (i) cache at OLT only, (ii) cache at ONT only and (iii) cache at OLT and ONT.

ing convention is not specified, only a hierarchical structure like the
one already adopted by HTTP is required for entries aggregation in
name-based routing tables.

Naming data chunks allows the network to directly interpret and
treat content according to its semantic with no need for DPI (Deep
Packet Inspection) as for transparent caching. The content delivery
process is then driven by three basic communication mechanisms:

- Name based request routing. CCN forwarding engine is based
on a name-based routing table storing one or more potential next
hops towards a set of content items and on a Pending Interest Ta-
ble (PIT) keeping track of ongoing requests in order to route data
packets back to the user along the reverse request path (breadcrumb
routing).

- Receiver-based connectionless transport. Differently from cur-
rent sender-based transport model, CCN data transfer is triggered
and controlled by user requests (Interests) in a pull-based fashion.
Rate and congestion control is performed at the end user by means
of a connectionless, yet stateful transport protocol with the follow-

ing characteristics: (i) no connection instantiation for the support
for user/content mobility; (ii) support for retrieval from multiple
sources, a priori unknown at the user (e.g. intermediate caches);
(iii) support for multipath communication (to improve user perfor-
mance and traffic load balancing).

-In-network caching. The content-awareness provided by names
to network nodes enables a different use of routers’ buffers, not
only to absorb input/output rate unbalance but also for temporary
in-network caching and processing (i.e. data transcoding) of in-
transit Data packets. Even without additional storage capabilities
in routers, the information access by name of CCN allows new
uses of in-network wire speed storage. Indeed, network nodes tem-
porarily store content items/chunks in order to serve future requests
for the same content (reuse) and to recover from potential packet
losses (repair). Upon reception of a chunk request, a CCN node
first checks if the requested chunk is present in the local cache. If it
is the case, the content is returned back to the user. Otherwise, the
request is forwarded to the next hop by the ICN request routing.



CCN data plane can be easily implemented in hardware in CPEs
(ONT or home gateways) and router line cards. The necessary pro-
cessing of content requests and replies (that many proprietary prod-
ucts already do for transparent caching applications) results feasi-
ble at high speed and simplified w.r.t. transparent caching solution
(as it does not involve complex DPI operations). For the adoption
of CCN communication model, we believe that a required step may
be the standardization of the main building blocks: packet formats,
processing and API specifications.

6.3 Transparent web caching and encryption
As mentioned in Sec.3, the usage of encryption instead of plain

text in the Internet is growing and is also considered a desirable
feature to deploy increasingly as much as possible. HTTP 2.0 draft
[6] currently under discussion in the HTTPbis IETF working group
specifies encryption by default by using TLS 1.2 [13]. TLS pro-
vides communications security for client/server applications and
encrypts everything included in the TCP byte stream. The encryp-
tion service provided by TLS is not compatible with proxy or trans-
parent caching which is however a very important service success-
fully deployed to reduce bandwidth consumption in many network
locations. Caching non encrypted web traffic in proxies or transpar-
ent appliances is today implemented and optimized by using HTTP
almost as a transport layer. An HTTP datagram has also been pro-
posed in [31] to effectively implement almost all the functionalities
CCN provides, with the exception of data encryption and security
in general. It is clear that encrypted web traffic, using TLS, can be
cached only in the end points, i.e. the client web browser, or appli-
cation, and in content provider appliances. Of course this latter end
point can be distributed in a CDN which manages the encryption
on behalf of the content provider. Therefore caching encrypted web
traffic cannot be implemented as a transparent network primitive
because it would always require the sender to delegate encryption
to a third-party, e.g. a CDN. A minimum level of cooperation is re-
quired to guarantee inter-networking of communications primitives
which are based on delegation. Datagram based packet-switched
networks make use of delegation for data forwarding and routing
but other services like name resolution, as provided by the DNS, do
require delegation as well. We believe that in-network data caching
is an additional transparent network primitive that cannot be im-
plemented without guaranteeing the required level of security and
interoperability that TLS cannot provide.

TLS tunnels can be bypassed in principle, at a certain extent, but
not in a fully transparent way to the end users. A web proxy be-
tween the content provider and the user can terminate a TLS tunnel
by issuing on the fly a fake certificate to the user and create a new
TLS tunnel between the proxy and the user. In this way all traf-
fic would not be encrypted anymore at the proxy. Caching would
then be possible again. Such system is however a workaround and
does not constitute a solution for many reasons: (i) the user is sup-
posed to accept a certificate signed by a non trusted authority, (ii)
the client adds the proxy as a trusted certification authority which
can then issue trusted keys; (iii) the client accepts self certified cer-
tificates. This technique has the drawbacks to expose the user to
higher level of vulnerability to external attackers. To the best of
our knowledge, CCN is the only network architecture addressing
data security by design instead of tunnel security, which is a fea-
ture that HTTP does not provide yet.

6.4 Technical feasibility
Previous sections have shown that significant benefits in terms

of traffic reduction can be achieved at the cost of very limited ad-
ditional memory. Indeed, a single ONT installed in a user’s home

would only need to host approximately 100MB of additional mem-
ory. Such memory, currently not available in the optical device, is
available in the home gateway, that are equipped with enough CPU
resources to easily manage 100MB of RAM at 1Gbps. Upstream to
the OLT, 100GB memory in a router line card would be enough to
provide the early shown gains and it seems feasible in current hard-
ware. Hence, the deployment of a µCDN technology in the home
would only require to implement the content-centric forwarding en-
gine in the home gateway firmware – which again seems feasible
due to the current development effort on several CCN/NDN proto-
types.

7. DISCUSSION AND CONCLUSION
In this paper, we provide evidence of the potential gains asso-

ciated to the deployment of micro CDN technologies in ISP net-
works. Our analysis is grounded on a large dataset collected via the
on-line monitoring of links between the access and the back-haul
network of Orange France. Leveraging one month and a half of
continuous traffic monitoring, we are able to support our design by
an accurate characterization of content dynamics.

The large data set we have used allowed fine grained statistical
analysis of content popularity dynamics, whose value goes beyond
the primal objective of this paper. Indeed, the analysis demon-
strates the inadequacy of traditional models, like simplistic Zipfs
workloads, and their failure for prediction and dimensioning. The
gains are striking: with a negligible amount of memory of 100MB
on CPEs, the load in the access network (GPON) can be reduced
by 25%, while embedding a 100GB of dynamic memory in edge
IP router line cards can also reduce back-haul links load of about
35%.

The significant potential gains we have measured in today traffic
does no apply to encrypted web application (15% in our dataset)
which cannot be transparently cached. Caching TLS encrypted
traffic is however going to be a significant issue for ISPs as it
would require some form of interaction with the content provider,
or the CDN on its behalf. Transparent caching of encrypted traffic
might also be achieved by TLS tunnels interception which implies
some form of increased vulnerability at the user’s client. We sug-
gest instead to use CCN as the best fit technology to address all
the drawbacks of currently available workarounds and providing
caching as a transparent network primitive. We additionally assess
technical feasibility in nowadays hardware, and argue that such a
small amount of additional memory can be supported at high speed
on current technologies. We finally identify steps for micro-CDN
implementation, outlining arguments to support a CCN-based de-
ployment as basic building block. Our analysis suggests that CCN-
based solutions are close enough to be deployed in real ISP net-
works – its realization is part of our ongoing work.
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