
Fighting the bufferbloat: on the coexistence

of AQM and low priority congestion control

Y. Gong, D. Rossi, C. Testa, S. Valenti

Telecom ParisTech, Paris, France

first.last@enst.fr

M. D. Täht

bufferbloat.net

dave.taht@gmail.com

Abstract—Nowadays, due to excessive queuing, delays on the
Internet can grow longer than several round trips between
the Moon and the Earth – for which the “bufferbloat” term
was recently coined. Some point to active queue management
(AQM) as the solution. Others propose end-to-end low-priority
congestion control techniques (LPCC). Under both approaches,
promising advances have been made in recent times: notable
examples are CoDel for AQM, and LEDBAT for LPCC. In this
paper, we warn of a potentially fateful interaction when AQM
and LPCC techniques are combined: namely (i) AQM resets
the relative level of priority between best effort and low-priority
congestion control protocols; (ii) while reprioritization generally
equalizes the priority of LPCC and TCP, we also find that some
AQM settings may actually lead best effort TCP to starvation.
By an extended set of experiments conducted on both controlled
testbeds and on the Internet, we show the problem to hold in the
real world for all tested combination of AQM policies and LPCC
protocols. To further validate the generality of our findings,
we complement our experiments with packet-level simulation,
to cover cases of other popular AQM and LPCC that are not
available in the Linux kernel. To promote cross-comparison, we
make our scripts and dataset available to the research community.

Index Terms—Bufferbloat, AQM, Scavenger protocol, Experi-
ments, Simulation

I. INTRODUCTION

Internet delays are now as common as they are madden-

ing [12]. The root cause for these delays can be identified with

excess buffering a.k.a. bufferbloat” inside a network. Although

this is nothing new [9], the situation has deteriorated in recent

years due to mainly two facts: (i) TCP loss-based design, that

forces the bottleneck buffer to fill before the sender reduces its

rate and (ii) relatively large memories in front of low-capacity

ADSL and cable links that can translate into many seconds of

queuing delay [14].

Some point towards local active queue management (AQM)

techniques (i.e., affecting the scheduling and discard of packets

in the buffer differently from a traditional FIFO discipline) as

the ultimate solution to reduce queuing delay. Others prefer

another direction: the engineering of end-to-end flow and

congestion control (CC) alternatives to best effort TCP, and

specifically aiming at lower than best effort priority. In this

work, we focus on the coexistence of best effort TCP CC and

Low Priority CC (LPCC) transiting a bottleneck link governed

by AQM. In the rest of this section we explain the reasons

supporting the relevance and timeliness of this goal.

AQM is not a new research field, with numerous tech-

niques proposed over the years such as RED [11], SFQ [17],

DRR [25], Choke [20] and, very recently, CoDel [18]. Yet,

despite numerous AQM proposals, they have so far encoun-

tered limited adoption. The difficulties in tuning RED [10]

are well known, and the computational cost of Fair Queuing

was, back in the 90s, considered to be prohibitive (see [12] for

an historical perspective). The situation has however started to

change, with operators worldwide implementing AQM policies

in the upstream of the ADSL modem (e.g., in France, Free

implements SFQ since 2005 [4]) to improve the quality of

user experience.

Similarly, research in the CC domain has produced many

proposals for low-priority (or background) transfers, such as

NICE [26], TPC-LP [15] or, more recently, LEDBAT [24].

While TCP-LP has been around in the Linux kernel for about a

decade, it has seldom been used1. However, ignited by the ease

of application-layer deployment, scavenging CC services are

now becoming popular: examples of this trend are represented

by Picasa’s background upload option and the adoption of a

LPCC by BitTorrent. Indeed, BitTorrent recently abandoned

TCP in favor of LEDBAT, a “low extra delay background

transport” protocol implemented at the application-layer over

a UDP framing2. Quoting B. Cohen, LEDBAT is now the bulk

of all BitTorrent traffic, [...] most consumer ISPs have seen

the majority of their upload traffic switch to a UDP-based

protocol” [5].

It is out of the scope of this paper to provide an overview

of AQM and CC research, for which we point the reader to

the above sources. Yet, it is worth to highlight an interesting

similarity between the most recent approaches of either class,

namely the CoDel AQM and the LEDBAT CC, as both aim at

explicitly controlling queuing delay. They both employ a target

delay parameter upon which dropping decisions or congestion

window modifications are based respectively.

A. A motivating example

Interestingly, while the underlying ideas and knobs that

AQM and LPCC can exploit are similar (e.g., LEDBAT and

1In recent kernels, it is not even on
net.ipv4.tcp_allowed_congestion_control, i.e., among
the TCP flavors allowed by default.

2The protocol is usually referred to either as LEDBAT (in the IETF
community [24]) or as uTP (in the BitTorrent BEP [19] community). To
avoid ambiguity, in this paper we employ its IETF name.

2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

C
u
m

u
la

ti
v
e

U
ti

li
za

ti
o
n

Time [s]

DropTail

TCP%=98.7% E[Q]=379.4 η=0.99

LEDBAT

TCP1

TCP2

TCP3

TCP4

TCP5 Ledbat 1-5

0 10 20 30 40 50 60

RED

TCP%=59.1% E[Q]=3.74 η=0.96

TCP1 2 3 4 5 1 2 3 4 5

Fig. 1. Illustrational example of problems arising from the inter-
action of AQM and CC techniques (ns2 simulation for AQM=RED,
CC=TCP+LEDBAT).

CoDel), their interplay can have negative consequences: we

find that AQM can induce a reprioritization of CC. In other

words, current scavenging protocols can successfully realize

a lower-than-best-effort priority only if the bottleneck buffer

operates according a DropTail discipline.

Fig. 1 illustrates the phenomenon: we stress that, while the

picture depicts simulation results gathered in a very specific

case, the remainder of this paper will show the phenomenon

to hold under a large range of AQM+LPCC scenarios (using

both real-world experiments and ns2 simulations). The picture

shows a breakdown of the link utilization when 5 TCP

NewReno (each of which is represented with a different shade

of light-gray) and 5 LEDBAT (dark-gray) backlogged flows

share the same bottleneck. Capacity is set to 10 Mbps and

the buffer has room for 500 packets (600 ms worth of delay);

for the sake of simplicity, delays are homogeneous across

flows. The left plot reports the case of a DropTail queuing

discipline, while the right one reports the case of RED. Plots

are annotated with further statistics concerning the average

queue size in packets E[Q], the capacity share exploited by

the aggregate TCP%, and the average link utilization η.

In the DropTail case, the LEDBAT protocol operates in a

lower-than-best-effort mode: we see that this delay-based scav-

enging protocol successfully exploits the spare capacity left

unused by NewReno (as shown in [22]). The TCP aggregate

uses the bulk of the capacity (TCP%=99%), with a fair share

among TCP flows (due to homogeneous delay). However,

the queuing delay approaches half a second because nearly

400 full-size TCP packets are queued on average. Clearly,

bufferbloat would be even worse for lower (e.g., ADSL-

like) capacities, or larger buffers (common defaults for home

gateways are well in excess of 1000 packets).

In the RED case, while it is successful in limiting the queue

size (less than 4 packets on average), this comes at the cost of

(i) a slight 3% reduction of the link utilization, (ii) a complete

reset of the relative level of priority between flows. In the

case depicted in the figure, the share is now fair among all

LEDBAT and NewReno flows, so that LEDBAT operates in

a best effort mode, and is thus as aggressive as TCP. While

an AQM fixed the bufferbloat, it destroyed the relative priority

among CC protocols.

While the interaction between LEDBAT and AQM is

pointed out in [23] and mentioned by the draft [24], we

believe both the depth and the extent of the problem to be

underestimated. As for the depth, Sec. II not only confirms the

phenomenon to hold in the real world via Internet experiments

on multiple AQM and LPCC techniques, but also shows that

the relative level of priority seldom reverse under AQM. As

for the extent, in reason of the limited availability of actual

implementation of AQM and LPCC in the Linux kernel, we

are forced to complement our experimental methodology with

a simulation based one: Sec. III summarizes results of over

3,000 simulations, showing that the phenomenon just illus-

trated is a fairly general problem, arising from the interaction

of AQM and any LPCC protocol. In spirit with the open TMA

workshop series, we make our scripts and datasets available

to the community at [1].

II. EXPERIMENTAL RESULTS

The goal of our experimental campaign is to confirm the

occurrence of the phenomenon illustrated in Fig. 1 under a

wide range of scenarios. Since our aim is not to propose

any new AQM or LPCC, we select the only ones that are

already available in recent Linux 3.2 kernel: namely, RED [11]

and SFQ [17]) for AQM and TCP-LP [15] for the LPCC

protocol family. As previously pointed out, LEDBAT cannot

be excluded from the mix since it is, by far, the most successful

LPCC: as such, we employ the libUTP [13] application-level

implementation of BitTorrent that we already analyzed in [21].

A couple of points are worth stressing. Although we

are aware of the fallacies of RED (as are the authors of

CoDel [18]), we believe it needs to be considered as a

reference benchmark (to which indeed CoDel is compared to

in [18]). Additionally, note that RED is one of the few AQM

policies available on common recent Linux kernels shipped

with standard distributions, hence we believe it would not

make sense to exclude it from this study due to its known

performance issues [16], [10]. Similarly, we are aware of

the latecomer unfairness issues of LEDBAT [22], [8], but its

widespread use makes it necessary to consider it in the mix.

Incidentally, while our choice is forced by the availability of

AQM and LPCC implementation in Linux, we can expect the

performance of other AQM+LPCC combinations to fall into

the boundaries defined by {RED,SFQ}×{TCP-LP,LEDBAT}.

On the one hand, this is due to the fact that RED vs. SFQ

yield to small vs. larges queuing delays respectively; on the

other hand, it is known that TCP-LP and LEDBAT have the

most and the least aggressive behavior in the LPCC family [7]

– simulation in Sec. III will confirm this expectation.

For any AQM and LPCC combination, we explore several

experimental settings, including varying bottleneck capacity

C, configuration of AQM parameters, number of flows in

the bottleneck N , in both an emulated testbed and in a

3

 0
 0.2
 0.4
 0.6
 0.8

 1

DropTail, 0.5Mbps HTB

U
ti

li
za

ti
o

n
 b

re
ak

d
o

w
n

 (
T

C
P

,
L

E
D

B
A

T
)

Time [sec]

RED, 0.5Mbps HTB

U
ti

li
za

ti
o

n
 b

re
ak

d
o

w
n

 (
T

C
P

,
L

E
D

B
A

T
)

Time [sec]

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 10 20 30 40 50 60

DropTail, 10Mbps PHY

U
ti

li
za

ti
o

n
 b

re
ak

d
o

w
n

 (
T

C
P

,
L

E
D

B
A

T
)

Time [sec]

 0 10 20 30 40 50 60

SFQ, 10Mbps PHY

U
ti

li
za

ti
o

n
 b

re
ak

d
o

w
n

 (
T

C
P

,
L

E
D

B
A

T
)

Time [sec]

Fig. 2. Testbed experiments. Utilization breakdown among TCP and
LEDBAT, for different AQM techniques (DropTail, RED, SFQ), capacities
(500 Kbps, 10 Mbps) and emulation technique (HTB, PHY).

real Internet deployment. Throughout this paper, we express

system performance mainly in terms of the link utilization η,

the share of the link exploited by the TCP aggregate TCP%,

and the average queue length E[Q]. For convenience, we can

either express E[Q] in number of packets (possibly normalized

over the buffer size E[Q]/Qmax to gauge the bufferbloat

intensity), or as the actual packet sojourn time in the queue (a

more direct measure of the user quality of experience).

A. Testbed experiments

In the testbed experiments, we directly connect two PCs

through a crossover Ethernet cable. Capacity limitations are

either emulated through a Hierarchical Token Bucket (HTB)

of the standard Linux traffic control tc suite (as in Fig. 1),

or natively by forcing C = 10Mbps PHY Ethernet through

ethtool (which is a more reliable option than HTB). In both

cases, we turn off most features that could possibly interfere

with the experiments (e.g., jumbo frames, TCP segmentation

offload, interrupt coalescing). To emulate a WAN setup, we

inflate RTT delay by a constant amount equal to 30 ms using

netem. We configure the tc queuing discipline to either

DropTail (i.e., the default pfifo_fast), RED (with state

of the art configuration) or SFQ.

We generate backlogged traffic during 60 seconds experi-

ments, using iperf for all TCP flavors (both Best-Effort and

low-priority) and simple client/server applications provided by

libUTP for the application-layer LEDBAT implementation.

For best effort TCP, we report results using NewReno, the pro-

tocol of choice at the IETF, and leave the study of Compound

(default TCP flavor in Windows) and Cubic (default in Linux)

for future work3.

As for queuing delay measurement, we point out that

dark buffers may lay at multiple points in the kernel stack

3While Windows, and thus Compound, constitutes the largest portion of
hosts, it would be difficult to replicate the same methodology. Preliminary tests
with Cubic suggest the phenomenon to hold; at the same time, we incur in
problems with Cubic vs. TCP-LP since the latter appears to be more aggressive
than Cubic under DropTail– so we prefer to examine the issue at a later time.

TABLE I
TESTBED: LEDBAT VS. TCP-LP

5+5 flows 1+1 flows
TCP% E[Q] ms TCP% E[Q] ms

FIFO 94.9 6437.3 99.5 5304.3
LEDBAT RED 49.3 11.3 1.7 9.5

SFQ 76.1 106.4 57.7 15.1

FIFO 50.8 7870.6 65.8 7471.9
TCP-LP RED 57.0 21.0 97.5 2.7

SFQ 49.8 144.2 50.0 25.2

(e.g., TCP buffers, device driver), and that buffering may

occur outside the host (e.g., in the ADSL modem in Internet

experiments). Hence, we opt for a simple methodology that

mimics the way in which NICE measures the queuing delay:

specifically, we monitor the RTT through a low frequency

ICMP ping command and estimate queuing delay samples

as Qi = RTTi − minj≤i RTTj . Notice that, as the reverse

direction is carrying only ACK data and is thus not congested,

we are safe in assuming that the RTT variation is due to

queuing at the sender side.

A further example of the temporal evolution of the uti-

lization breakdown of TCP vs. LEDBAT flows is depicted

in Fig. 2 for different AQM techniques (DropTail, RED,

SFQ), capacities (500 Kbps, 10 Mbps) and emulation tech-

nique (HTB, PHY). The phenomenon early shown in Fig. 1

is thus confirmed for different AQMs and testbed settings:

shortly, AQMs induce reprioritization of heterogeneous CC

flows. We also see that, while when the capacity is abundant

the breakdown is smooth, the opposite happens when capacity

is scarce (which additionally leads to unfairness at short

timescales).

We conduct a more systematic experimental testbed cam-

paign that is summarized in Tab. I, reporting the TCP break-

down and average queuing delay for an emulated HTB ca-

pacity of C = 500Kbps. The total number of flows varies

in N ∈ {2, 10}, with flows equally split in the best effort

TCP and LPCC families. Experiments report the average over

3 independent runs. As we may now expect, DropTail leads

to bufferbloat of multiple seconds, which is instead solved

by both RED and SFQ. The picture may change completely

under RED, depending on the LPCC flavor and the number of

flows: indeed, while for N = 10 the reprioritization happens

for both LEDBAT (TCP%=49.3) and TCP-LP (57%), in the

case that N = 2 flows compete for the same access, the

LEDBAT+NewReno combination, through RED, results in

TCP NewReno starvation (1.7%) while the opposite happens

under TCP-LP+NewReno (97.5%).

These differences reflect the LPCC dynamics of LED-

BAT and TCP-LP. The latter is still loss-based and AIMD-

controlled, and its low priority stems from a slower recovery

after losses that the AIMD dynamics force. The former is

delay-based and PID-controlled: by limiting the queue size,

it will seldom be penalized under RED. Whenever the queue

grows due to best-effort TCP AIMD, LEDBAT reduces its own

window, and so the chances that a packet will get dropped are

4

TABLE II
LEDBAT: TESTBED VS. INTERNET EXPERIMENTS

5+5 flows 1+1 flows
TCP% E[Q] ms TCP% E[Q] ms

FIFO 94.9 6437.8 99.5 5304.3
Testbed RED 49.3 11.3 1.7 9.5

RED⋆ 71.9 763.9 98.2 333.8

FIFO 97.0 6551.7 98.9 916.0
Internet RED 2.6 45.0 5.1 29.1

RED⋆ 63.8 745.2 86.7 305.4

very low. Whenever TCP experienced a timeout and abruptly

shrank its window, LEDBAT instead grows its window again,

but in reason of its low target delay, it will limit the amount

of queuing and again prevent its packets from being dropped.

Under SFQ, TCP starvation phenomena are avoided. All

flows get hashed in different buckets at enqueue time, and

since hash buckets are queried in a round robin fashion,

this guarantees that each flow is able to send data in turn

– including the best-effort TCP that was heavily penalized

under RED. Yet, reprioritization still occurs. However, the

queuing delay under SFQ (which has a default buffer size of

127 packets) grows up to about 100-150 ms, thus approaching

the limit of what is considered to be harmful for interactive

communication.

B. Internet experiments

We then perform additional experiments on the wild Inter-

net. Since we have already shown the reprioritization to hold

for different combinations of LPCC and AQM, our aim here

is to disproof that these are artifacts that only arise in testbeds

due to, e.g., the extremely controlled settings or, conversely,

due to unexpected interactions due to the emulation layer.

In order to replicate a setup as close as possible to the typical

user scenario, the sender is connected in 802.11g WiFi to an

ADSL box. The receiver is connected to another ADSL box

of another ISP through the Ethernet interface. The minimum

RTT delay between the two hosts is approximately 50 ms, and

the capacity between the hosts only slightly exceeds 500 Kbps

(so that it can be compared with the testbed).

We carry on experiments only for the LEDBAT LPCC, using

two configurations4 of RED with results summarized in Tab. II.

It can be seen that TCP starvation persists under RED when

the number of flows is small: we stress that we observed

TCP starvation only under the RED+LEDBAT combination,

since as previously explained RED tries to penalize flows

proportionally to the queue they create, while LEDBAT is

designed to precisely avoid queuing. Hence, it seems that

we have found yet another reason not to deploy RED other

than those listed in [16]: since RED is one of the few AQMs

available in the Linux kernel, and due to the growing amount

of LEDBAT traffic, we believe this potential problem is worth

highlighting once more.

4RED⋆ is a configuration inspired by [10] and crafted ad hoc by a standard
trial and error procedure. Configuration details and scripts used for these
experiments are available at [1].

0
2
4
6
8

10

Q
u
eu

in
g
[%

]
E
[Q

]/
Q

m
ax

77x 53x 40x
22x

14xB u f fe rb lo a t r e d u c t io n

w .r . t D ro p T a i l

95
96
97
98
99

100

U
ti
li
za

ti
o
n
[%

]

-1.3% -1.4%
-0.5%

0% 0%

40
45
50
55
60

RED Choke CoDel DRR SFQ Q Qmax

Q m a x= 4 0 0

T
C
P
sh

ar
e
[%

]

-41%
-46%

-35%
-44% -45%

0
20
40
60
80
100

47x

95
96
97
98
99
100

-0.4%

=10 =400
0
20
40
60
80
100

DropTail

-52%

max

Fig. 3. Impact of AQM policies on the bufferbloat intensity E[Q]/Qmax

(top) link utilization η (middle) and TCP% breakdown (bottom).

Finally, the ad hoc RED⋆ configuration reinstates instead the

relative CC priorities, but at the cost of an already sizeable

bufferbloat. Intuitively, in this case our configuration starts

dropping packets after the LEDBAT queuing delay target, so

that TCP has the chance to grow its congestion window at the

expense of LEDBAT (that by its LPCC nature will backoff

in presence of best effort TCP) before one of its packets get

dropped by AQM; however, TCP recovery is in this case fast

enough, and the additional buffer space beyond the LEDBAT

target is large enough, to let TCP prevail over LEDBAT.

III. SIMULATION RESULTS

Finally, the aim of our ns2 simulation campaign is to

test the validity of the reprioritization phenomenon under the

largest possible set of scenarios. We therefore include addi-

tional AQM techniques that, though popular in the research

community, are however not available in the Linux kernel

– namely, Choke [20], DRR [25], CoDel [18]. Similarly,

we extend our investigation of LPCC techniques to include

NICE [26]. Notice that some of these modules are not directly

available in ns2 (version 2.33), that we patched to support

Choke [20], CoDel [18], LEDBAT and NICE (the last two

LPCCs using our own open source implementations [2]).

In what follows, we aim at conveying the most relevant

message we gather from simulation in a straightforward way:

thus we first consider a subset of the results to better stress (i)

the impact of AQM policies in Sec. III-A, (ii) the joint impact

of AQM and LPCC in Sec. III-B, and (iii) the validity of the

observation over a large parameter range in Sec. III-C.

A. Impact of AQM policy

Unless otherwise stated, we consider an equal number N =
5 of best effort TCP NewReno and low-priority flows sharing

a link having capacity C = 4Mbps and a buffer size Qmax =
400packets (corresponding to a maximum bufferbloat of 1.2

seconds). All flows are backlogged, start at time t = 0, and

have a homogeneous-delay RTT = 50ms. Simulations last

for 60s, and 10 runs are repeated for each parameter settings.

5

For the time being, we fix the LPCC to LEDBAT, and

examine the impact of different AQM techniques. Fig. 3

reports the bufferbloat intensity E[Q]/Qmax (top) link uti-

lization η (middle) and TCP% breakdown (bottom) for varying

AQM policies, and for DropTail as a comparison (right). As

expected, at the price of a slight decrease in the link utilization,

AQM reduces the intensity of the bufferbloat: compared to a

persistently full DropTail buffer, queue size and delay is from

14 to 77 times smaller, using SFQ and RED respectively.

This implies that, under AQM the queuing delay is always

less than 85 ms (SFQ, worst case), and generally much lower.

However, we see that the capacity share of the TCP aggregate

can drastically reduce 35%-46% (under CoDel and Choke

respectively). Notice that this result alone extends the validity

of the phenomenon observed under unknown5 AQM policies

in [23]. Finally, we point out that simply reducing the DropTail

buffer size is not a solution to the problem either: notice that

(i) as shown in Fig. 3, shorter DropTail buffer behaves like

AQM, in that bufferbloat is reduced but at the expense of

reprioritization and (ii) in case of varying link bandwidth as

in case of WiFi, there is no fixed size that would not translate

into bufferbloat.

B. Impact of AQM policy and LPCC protocol

We now explore the full product of LPCC flavors and AQM

techniques. Under DropTail, it is known [7] that LEDBAT

achieves the lowest priority against best effort TCP, followed

by NICE and TCP-LP. Both LEDBAT and NICE are delay-

based (the difference being that LEDBAT relies on one-way

delay measurement, NICE on RTT ones), while TCP-LP is

AIMD-based. We illustrate results as a parallel coordinate

plot in Fig. 4. Having noticed that link utilization is subject

to small variations, we consider the two main metrics of

interest: namely the bufferbloat intensity E[Q]/Qmax (left y-

axis) and TCP% share (right y-axis). Each (LPCC, AQM)

pair is represented as a line in Fig. 4, and a light-gray

strip represents the ideal case where the queue is short but

priorities are unaltered. For instance, we see that the three

(LPCC,DropTail) combinations appear as horizontal lines on

the top of the figure, since under DropTail bufferbloat has

maximal intensity and TCP% monopolizes the bottleneck (the

order of the curves reflect the order of priority in [7]). Con-

versely, all (LPCC,AQM) combinations excluding DropTail

are very close, as AQM implies low bufferbloat but jeopardizes

CC priorities (specifically, all TCP and LPCC flows have

roughly the same priority).

C. Sensitivity analysis

We conducted over 3,000 simulations to investigate the

effect of other parameters such as (i) buffer size Qmax ∈
[100, 400], (ii) link capacity C ∈ [0.25, 10]Mbps, (iii) ho-

mogeneous RTT=50 ms vs. heterogeneous RTT delay with

E[RTT] = 50ms, (iv) number of LPCC and TCP flows

N ∈ [1, 5], (v) flow duty cycle in [10%,100%] – flows have

5Authors just mention that “different prioritized traffic classes” are imple-
mented in the “modern home gateways” used in their experiments.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1
Bufferbloat intensity TCP%

B
u

ff
er

b
lo

at DropTail

LEDBAT

TCP-LP




























NICE

L
o

w
er

 p
ri

o
ri

ty
B

E
 p

ri
o

ri
ty

T
C

P
 s

ta
rv

at
io

n

{CoDel, Choke, DRR, RED, SFQ }×
{NICE, TCP-LP, LEDBAT}

Id
ea

l

Fig. 4. Joint impact of AQM and LPCC on the queuing delay and TCP
breakdown.

an on/off behavior, with exponentially distributed on/off times,

and have infinite data to send during on periods. An extended

set of results (that we avoid to report here for lack of space

but that we make available along with the simulation scripts

at [1]), confirms that the reprioritization phenomenon remains

valid under all explored circumstances.

Here, we only briefly comment on the impact of (iii)

RTT heterogeneity, in which case it is interesting to observe

the intra-protocol fairness (i.e., among flows in the same

TCP or LPCC aggregate), that may change significantly de-

pending on the AQM policy. We measure the average Jain

fairness index as F = (FTCP + FLPCC)/2, where FX =
(
∑N

i=1
Ti)

2/(N
∑N

i=1
T 2

i) is the fairness within aggregate X ,

with Ti throughput of the i-th connection. We have that

fairness under CoDel (F = 0.81) is only slightly better

than RED (F = 0.78) and significantly smaller than SFQ

(F = 0.99). Notice that CoDel fairness range is coherent

with [18], which however does not address a comparison with

SFQ and reports significantly smaller fairness values for RED

(under a more heterogeneous scenario).

IV. RELATED WORK

It would be extremely cumbersome to retrace over 20

years of Internet research in these few pages (we refer the

reader to [12], where without providing a complete picture,

it does however present a historical viewpoint). We extend

this viewpoint by reporting in Fig. 5 a timeline of the AQM

and LPCC algorithms used in this paper. The timeline clearly

shows a temporal separation of the two research topics, which

in our opinion helps understand why the AQM vs. LPCC

interaction assessed in this paper was not previously exposed.

LPCC:

AQM:

[ref]

year

SFQ

[17]

1990

RED

[11]

1993

DRR

[25]

1995

Choke

[20]

2000

NICE

[26]

2002

LP

[15]

2003

LEDBAT

[24]

2010

CoDel

[18]

2012

Fig. 5. Timeline of AQM and LPCC algorithms.

6

To the best of our knowledge, only [23] mentions AQM and

a LPCC (namely, LEDBAT) in the same paper. In one of the

tests authors experiment with a home gateway that implement

some (non-specified) AQM policy other than DropTail. When

LEDBAT and TCP are both marked in the same “background

class” the “TCP upstream traffic achieves a higher throughput

than the LEDBAT flows but significantly lower than” under

DropTail [23]. Moreover, under AQM it is possible that

“LEDBAT reverts to standard TCP behavior, rather than yield

to other TCP flows” [24]. In this paper, we not only show that

this behavior is general and can arise from the interaction of

any AQM and LPCC, but we also show that the AQM/LPCC

interplay can lead to best effort TCP starvation.

V. CONCLUSION

This work points out possible negative issues arising from

the interaction of AQM and CC techniques. Specifically,

under AQM it is likely that LPCC techniques will become

as aggressive as best effort TCP, and can mislead at least one

flavor of TCP to starvation (under RED). We now discuss the

implication of these findings.

As it seems that AQM and LPCC will have to coexist, there

is a need to find possible ways out of the negative interplay we

have shown in this paper. A general solution is hard to find,

as testified by the current standpoint after over 20 years of

research. Yet, a patch to the problem may be within reach,

but may be hidden by radical positions in favor of either

AQM or LPCC. While some see low priority protocols as

useful in the transient period until AQM will be deployed [23],

others are not convinced by AQM and propose “the end to

end approach as the solution to bufferbloat and just forget

about changing router behavior.” [6]. Arguing that a practical

solution requires a compromise between both extremes, we

agree with more moderate viewpoints that “AQM is just one

piece to the solution of bufferbloat” [18].

Consider indeed that an ideal solution (recall Fig. 4) should

guarantee low access delay irrespectively of the mix of CC

protocols and maintain the relative level of priority among

flows in the mix as well. Since even a single AIMD flow

may bufferbloat the others, the solution needs AQM. At the

same time, to avoid the CC reprioritization phenomenon, we

argue that classification capabilities will be needed in AQM to

account for flows’ explicitly advertised level of priority. Notice

that while in the more general case classification has failed

to be adopted (IP TOS field, DiffServ, etc.), and the ability

to claim higher priority could be easily gamed, in a hybrid

AQM vs. LPCC world it makes sense for flows to claim a

lower priority.

Other avenues in AQM and LPCC remain to be explored.

First, AQMs evaluated in this paper either implement drop

(RED/CoDel/Choke) or scheduling (SFQ) strategies. At the

same time, hybrid AQM techniques that jointly exploit fair

queuing with early drop are appearing – as the fq_codel

technique that will make its way in future Linux kernels,

starting from 3.5 [3]. Though further testing will be needed

on these new AQM, we argue that the reprioritization problem

will remain.

Another sensible question is whether it would be possible to

differentiate priorities at a finer grain within the LPCC class.

For instance, the LEDBAT draft claims that different levels of

priorities can be induced by using heterogeneous targets: while

this solution may lead to starvation in case of backlogged flows

under a DropTail discipline [7], is not clear what the behavior

would be under AQM.

ACKNOWLEDGEMENT

This work was carried out at LINCS http://www.lincs.fr.

The research leading to these results has received funding

from the European Union under the FP7 Grant Agreement

n. 318627 (Integrated Project ”mPlane”).

REFERENCES

[1] http://www.infres.enst.fr/∼drossi/dataset/ledbat+aqm.
[2] http://www.infres.enst.fr/∼drossi/ledbat.
[3] https://lists.bufferbloat.net/pipermail/codel/.
[4] Aduf - historique firmware, 01/07/2005. http://88.191.250.12/viewtopic.

php?t=164746&view=previous.
[5] B.Cohen. How has bittorrent as a protocol evolved over time. http:

//www.quora.com/BitTorrent-protocol-company.
[6] B.Cohen. Tcp sucks. http://bramcohen.com/2012/05/07/tcp-sucks.
[7] G. Carofiglio, L. Muscariello, D. Rossi, and C. Testa. A hands-on

Assessment of Transport Protocols with Lower than Best Effort Priority.
In IEEE LCN, 2010.

[8] G. Carofiglio, L. Muscariello, D. Rossi, and S. Valenti. The quest for
LEDBAT fairness. In Globecom, 2010.

[9] S. Cheshire. It’s the latency, stupid! http://rescomp.stanford.edu/
∼cheshire/rants/Latency.html, 1996.

[10] M. Christiansen, K. Jeffay, D. Ott, and F.D. Smith. Tuning red for web
traffic. In ACM SIGCOMM CCR, volume 30, pages 139–150, 2000.

[11] S. Floyd and V. Jacobson. Random early detection gateways for conges-
tion avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413,
1993.

[12] J. Gettys and K. Nichols. Bufferbloat: dark buffers in the internet.
Commun. ACM, 55(1):57–65, 2012.

[13] G. Hazel. uTorrent Transport Protocol library.
http://github.com/bittorrent/libutp, May 2010.

[14] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. Netalyzr: Illumi-
nating the edge network. In ACM IMC, pages 246–259, 2010.

[15] A. Kuzmanovic and E.W. Knightly. TCP-LP: A distributed algorithm
for low priority data transfer. In IEEE INFOCOM, 2003.

[16] M. May, J. Bolot, C. Diot, and B. Lyles. Reasons not to deploy RED.
In IEEE IWQoS,, pages 260–262. IEEE, 1999.

[17] P.E. McKenney. Stochastic fairness queueing. In IEEE INFOCOM,
1990.

[18] Kathleen Nichols and Van Jacobson. Controlling queue delay. Commun.
ACM, 55(7):42–50, July 2012.

[19] A. Norberg. BitTorrent Enhancement Proposals on uTorrent transport
protocol (BEP29), 2009.

[20] R. Pan, B. Prabhakar, and K. Psounis. Choke - a stateless active queue
management scheme for approximating fair bandwidth allocation. In
IEEE INFOCOM, 2000.

[21] D. Rossi, C. Testa, and S. Valenti. Yes, we LEDBAT: Playing with the
new BitTorrent congestion control algorithm. In PAM, 2010.

[22] D. Rossi, C. Testa, S. Valenti, and L. Muscariello. LEDBAT: the new
BitTorrent congestion control protocol. In IEEE ICCCN, 2010.

[23] J. Schneider, J. Wagner, R. Winter, and H.J.Kolbe. Out of my way
– evaluating low extra delay background transport in an ADSL access
network. In ITC22, 2010.

[24] S Shalunov. Low Extra Delay Background Transport (LEDBAT). IETF
Draft, March 2010.

[25] M. Shreedhar and George Varghese. Efficient fair queueing using deficit
round robin. In ACM SIGCOMM, 1995.

[26] A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: A mechanism
for background transfers. In USENIX OSDI, 2002.

