
Data Plane Throughput vs Control Plane Delay:
Experimental Study of BitTorrent Performance

Claudio Testa1, Dario Rossi1, Ashwin Rao2, Arnaud Legout2
1 Telecom ParisTech, Paris, France –first.last@enst.fr

2 INRIA Planete, Sophia Antipolis, France –first.last@inria.fr

Abstract—In this paper, we address the trade-off between the
data plane efficiency and the control plane timeliness for the
BitTorrent performance. We argue that loss-based congestion
control protocols can fill large buffers, leading to a higher end-to-
end delay, unlike low-priority or delay-based congestion control
protocols. We perform experiments for both the uTorrent and
mainline BitTorrent clients, and we study the impact of uTP
(a novel transport protocol proposed by BitTorrent) and several
TCP congestion control algorithms (Cubic, New Reno, LP, Vegas
and Nice) on the download completion time.

Briefly, in case peers in the swarm all use the same congestion
control algorithm, we observe that the specific algorithm has
only a limited impact on the swarm performance. Conversely,
when a mix of TCP congestion control algorithms coexists, peers
employing a delay-based low-priority algorithm exhibit shorter
completion time.

I. I NTRODUCTION

Recently, BitTorrent replaced TCP for a low-priority delay-
based congestion control protocol known as uTP [1]. This
change was motivated by the inflation of buffer delays in
the current Internet [2] due to the TCP loss-driven congestion
control algorithm, a problem later called “bufferbloat” byJ.
Gettys [3]. Indeed, in case of a large buffer size (typical at
the access point), congestion control algorithms such as TCP
Cubic may cause the buffer queuing delay to grow up to
several seconds. Conversely, lower-than-best effort protocols
such as uTP explicitly limit the additional queuing delay
irrespective of the buffer size. However, such a limit might
result in data plane inefficiency, that is, the protocol may not
be able to fully utilize the available network resources.

Motivated by the above observations, we investigate the
implication of uTP on BitTorrent’s performance. Put in ab-
stract terms, in the design of non realtime peer-to-peer (P2P)
systems, we are interested in studying the relative importance
of data plane throughput and control plane delay.

The task of the data plane is essentially to efficiently transfer
data, so thethroughput is the desired metric to evaluate the
data plane performance. The task of the control plane is
instead to spread the knowledge that data has moved in the
system. If we define thedelay as the time needed to propagate
information about the data transfer, this delay is the desired
metric to evaluate the control plane efficiency.

Fig. 1 shows a dual interdependence of the control and
data planes. The control plane propagates the information
about availability of data at a peer after this data has been
transferred by the data plane to that peer. The data plane

Fig. 1. Control and data plane interdependence.

replicates the data available at a peer, when information about
the availability of the data at that peer is disseminated to
the other peers that need a copy. Yet, the control and data
planes are mere logical abstractions that co-exists in the same
software, run on the same hardware, and share the same
network communication path and physical channel. Therefore,
the data plane transfer may interfere with the control plane
information dissemination. For example, the control plane
information can get queued behind1 a large volume of data
injected in the network by the data plane; this can slow down
the information spreading, and affect the data plane in turn.

We argue that systems should be optimized for the data
plane throughput, as long as this does not hurt the control
plane delay. However this is a delicate trade-off. As shown in
Fig. 1, when the sending rate exceeds the system capacityC,
the throughput saturates, but the delay grows due to buffering.
When the sending rates falls belowC, the data transfer is not
efficient, and this affects not only the data plane, but also the
control plane since there is no new information to be sent out.

In this paper, we perform experiments, considering both the
uTorrent and mainline BitTorrent clients, and we study the
impact of uTP (a novel transport protocol proposed by BitTor-
rent) and several TCP congestion control algorithms (Cubic,
New Reno, LP, Vegas and Nice), on the completion time of a
file downloaded using the BitTorrent protocol. Summarizing,
we observe that in case peers in the swarm all use the same

1If control messages queue up behind large chunks of data at thesame
access bottleneck link, the system information propagates more slowly, which
can have possibly negative influence of future system decisions. For instance,
the Rarest First policy of BitTorrent can select chunks thatare instead not
rare in the data plane, but whose availability has not been yet advertised by
the control plane due to the delay – which can in turn lead to bottlenecks in
the data plane later on.



congestion control algorithm (homogeneous scenario) thenthe
specific algorithm has only a limited impact, while the applica-
tion settings and policies have a paramount role in determining
the swarm performance. Conversely, when a mix of congestion
control algorithms coexists (heterogeneous scenario), peers
employing a delay-based low-priority congestion control can
opportunistically reduce their completion time (due to faster
signaling on their uplink) by a significant amount.

II. BACKGROUND

To the best of our knowledge, this specific question of the
interactions between the data and control planes has received
little attention. With client-server communications [3],when
the TCP data plane sends a very large window of data to
a narrow pipe with a large2 buffer, the TCP control plane
will be impacted because it relies on timely notification of
packet losses for correct operation. Citing Cerfet al. [3] “with
such large buffers, TCP’s slow-start algorithm does not see
any drops and thus greatly overestimates the correct pipe size
and requires multiple packet drops before TCP can enter its
congestion-avoidance phase”.

In the case of P2P communications, BitTorrent performance
has been investigated a lot since the seminal work [4], even
if the focus has been on the overlay layer [5] or the im-
pact of lower layers on traffic localization [6]. Few works
addressed the impact of the transport layer on BitTorrent
performance [7], [8]. Egeret al. [8] proposed an open-source
packet-level BitTorrent module forns2. They show that
the transport-layer congestion control dynamics interacts with
application-level dynamics, so that simulations considering the
application-level only [5], [6] may be optimistic. Testaet al.
[7] adopted the same simulator as the one of Egeret al.
to study the impact of uTP on BitTorrent completion time.
As such this work is the closest to our one. They show an
unexpected phenomenon — namely, peers employing uTP in
their uplink have a shorter completion time than with TCP.
The explanation is that uTP peers have a faster control plane,
so they are more opportunistic in “stealing download slots to
TCP peers”.

Yet, Testaet al. relied solely on simulations, so that we
cannot exclude results to be simulation’s artifacts, whereas
this work is instead based on experiments using real BitTorrent
clients and transport protocols. We indeed argue that perform-
ing experiments is an important step in the understanding of
the complex interactions between the data and control planes.

III. M ETHODOLOGY

In this paper, our goal is to study the trade-off between
the data plane efficiency and the control plane timeliness
on the content dissemination performance. We address this
question with controlled experiments with different congestion
control algorithms that intrinsically favor either the data plane
throughput or the control plane delay. In this section, we first

2Here “large” is relative to the pipe capacity: a 128 KB buffercan queue
1 second worth of packets when in front of a 1 Mbps channel.

TABLE I
CONGESTIONCONTROL DESIGN SPACE: A IM VS STRATEGY

Strategy
Delay-based Loss-based

Aim High-priority Vegas Cubic, NewReno
Low-priority Nice, uTP LP

summarize the congestion control algorithms used and then
we provide relevant details on our experimental setup.

A. Congestion Control Algorithms

For our analysis, we consider four different categories of
congestion control protocols, two based on thedesign strategy
to detect losses and two based on theaggressiveness in
grabbing the available bandwidth. The two categories basedon
design strategies are defined by theloss-based or delay-based
congestion control algorithm. The loss-based algorithms infer
congestion using a packet loss. The delay-based algorithms
infer congestion using delay’s variation on the flow path.
The two categories based on the aggressiveness are called
high-priority and low-priority. The high-priority algorithms
are efficient (and aggressive) in using the spare bandwidth,
while the low-priority algorithms are designed to use the spare
bottleneck bandwidth as a scavenger service.

In Tab. I, we report the most representative congestion
control algorithms for each of the above categories. IETF
endorses NewReno [9], a high-priority loss-based congestion
control algorithm for TCP. Vegas [10] was proposed as a
high-priority delay-based congestion control algorithm as an
alternative to the traditional loss-based NewReno algorithm.
Recent evolution of loss-based algorithms include Cubic [11]
and Compound [12]. Cubic has become the default algorithm
for TCP in Linux since kernel version 2.6.18 and Compound
the default one in Windows. LP [13] is a low-priority loss-
based congestion control algorithm available in Linux, and
Nice [14] and uTP [15] are two low-priority delay-based
congestion control algorithms that react on Round Trip Time
(RTT) and One Way Delay (OWD) variations respectively.
Unlike Nice, uTP explicitly limits the additional delay it adds
to the bottleneck buffer. This limit is currently set to 100 ms
to avoid harming interactive, delay-sensitive traffic [1].

In this work, we implemented Nice as a kernel module
(relatively simple extension from Vegas) and uTP as an
application-layer protocol on top of UDP. As we shall see,
though this may seem at first a detail, this difference has an
important impact on the methodology of this study.

Intuitively, high-priority or loss-based design favors data
plane efficiency, whereas delay-based or low-priority conges-
tion control favors control plane timeliness. But, this statement
is an oversimplification. For example, the low-priority but
loss-based LP algorithm can still generate losses, and the
queue can grow unbounded and be an obstacle to control
plane timeliness. Similarly Vegas, a high-priority delay-based
protocol, should keep the queue short and favor control plane
timeliness in spite of being designed for data plane efficiency.



We therefore recommend on-field tests to precisely assess the
actual impact of the congestion control algorithms.

B. Experiment Description

We performed our experiments on a private cluster, con-
sidering a flash crowd scenario in which 75 leechers join a
swarm initially populated by a single seed. The seed is used
to distribute a 100 MBytes file in the torrent. Each machine of
the cluster runs a single peer, seed or leecher. The uplink is
limited to 1 Mbps on the machines running the leechers and
5 Mbps on the machine running the seed. We consider a queue
size of 1 second for the uplink, which we believe represents
a conservative estimate based on the results made available
by Netalyzer [2], [3]. BitTorrent enables the users to limitthe
upload rate. For our experiments we set the upload rate limit
on each peer to five times the uplink bandwidth. This ensured
that the upload rate is limited by the uplink bandwidth on the
machine and not by the BitTorrent application.

We study the impact of the congestion control algorithms on
the data plane efficiency and control plane timeliness by using
the uTorrent 3.0 (UT for short) client and an instrumented ver-
sion of the mainline BitTorrent 4.0.2 (BT for short) client [16].
We conduct experiments on two scenarios. In thehomogeneous
scenario, all peers use the same congestion control algorithm,
and in theheterogeneous scenario half of the peers use TCP
Cubic, and half of the peers use another congestion control
among uTP, NewReno, Vegas, Nice and LP. In the remainder
of this work, we denote a set of peers in an experiment with
the notationX:Y , with X ∈ {BT, UT} and Y ∈ {uTP,
NewReno, Vegas, Nice, LP}. Additionally, we employ the
notationX:⋆ to indicate any congestion control algorithm used
with applicationX.

All outgoing connections of a BT peer will use the same
congestion control algorithm, because the operating system
imposes a single algorithm at thetransport-layer (CC-L4).
However, as reported in Tab. II and unlike other protocols, uTP
is implemented at theapplication-layer (CC-L7) and is only
available for uTorrent. UT implements a dual-stack connection
management, so that: (i) a uTP and a TCP connections are
opened in parallel; (ii) in case a uTP connection is successfully
established, the TCP one is dropped; (iii) connections are bidi-
rectional, so that a uTP incoming connection can be used in the
reverse direction. We notice that it is possible to disable uTP in
UT with an application level setting (bt.transp_disp in
the GUI). In the following, we consider the UT:Cubic variant
as well, in order to gauge whether performance differences
are rooted in the scenario, in congestion control choice, orin
the application-layer implementation and settings (e.g.,dual-
stack connection management policies, fine tuning of timers,
maximum number of simultaneous connections, etc.)

The instrumented mainline BitTorrent client logs the receive
time of all control plane messages (e.g., the HAVE or BIT-
FIELD messages) and of all data plane messages (the PIECE
messages). However, we use the original, non-instrumented,
uTorrent client that does not log such events. As such, we
measure the performance using metrics that are available for

TABLE II
APPLICATIONS AND CONGESTIONCONTROL IN OUR EXPERIMENTS

Client CC-L4 CC-L7
(BT) mainline Cubic, Vegas, Nice, LP
(UT) uTorrent Cubic uTP

both clients: (i) the download completion timeTi of leecheri
as reported by the tracker and (ii) the instantaneous queue size
Bi(t) measured at kernel-level by peeri. Intuitively, Bi(t) is
a metric of the delay in the control plane, andTi is a metric
combining the data plane throughput and the control plane
delay.

IV. EXPERIMENT RESULTS

A. Download time and Buffer occupancy

We first focus on the download completion time and the
buffer size. We consider different applications (BT, UT),
congestion control algorithms (Cubic, uTP, NewReno, Vegas,
Nice, LP), and scenarios (homogeneous, heterogeneous). We
report our results in Fig. 2, the top figures are for the
homogeneous scenarios and the bottom figures are for the
heterogeneous one. We use for the buffer occupancy (left plots)
an x-axis in KBytes and the corresponding buffering time in
seconds for new packets entering the queue.

Fig. 2-(a) shows the cumulative distribution function (CDF)
of the completion time for the homogeneous scenario. We
observe that the congestion control algorithm has a moderate
impact on the completion time of BitTorrent mainline clients
(BT:⋆) and that the completion time is generally shorter with
uTorrent (UT:⋆ < BT:⋆). We also observe a higher fairness
among uTorrent peers than among BT peers, because the UT:⋆

CDF has a steeper increase, meaning that completion times
are very similar for all uTorrent peers. Finally, we observethat
the completion time for uTorrent is shorter with uTP than with
Cubic (UT:uTP< UT:Cubic). These observations suggest that
both BitTorrent applications and congestion control algorithms
have an impact on BitTorrent’s performance, though the impact
of the congestion control algorithms seems, at least for BT:⋆,
limited according to Fig. 2-(a).

Fig. 2-(b) shows the CDF of the buffer occupancy for
the homogeneous scenario. We observe that the delay-based
algorithms (UT:uTP, BT:Nice, BT:Vegas) leads to the short-
est buffer occupancy, followed by the loss-based algorithms
(BT:LP and BT:NewReno), and by BT:Cubic as Cubic is more
aggressive than NewReno. Interestingly, the behavior of UT
with Cubic (UT:Cubic) is very different from the one of BT
with Cubic (BT:Cubic), confirming the complex interactions
between the application and the congestion control algorithm.

We see in Fig. 2-(a,b) no systematic correlation between the
completion time and the buffer occupancy. Indeed, whereas
UT:uTP has the shortest completion time and lowest buffer
occupancy, BT:Nice has among the worst completion time
(slowest peers for all swarms are BT:Nice), but the second
shortest buffer occupancy.

Interestingly, results change significantly with an heteroge-
neous scenario, see Fig. 2-(c,d). In this scenario, half of the
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Fig. 2. Performance of (a)-(b) Homogeneous and (c)-(d) Heterogeneous swarms.

peers are using Cubic and half of them are using a single other
congestion control algorithm among uTP, NewReno, Vegas,
Nice and LP. For the sake of clarity, we show a CDF curve
for each half of the peers using the same congestion control
algorithm. In order to reduce the set of CDF curves and
because the performance of the BT:Cubic peers is different
from the other sets of peers, we show an envelope (with
light gray shaded color) instead of independent curves. For
instance, BT:Vegas is for half of peers using Vegas only for
an heterogeneous scenario, and the other half using Cubic falls
into the envelope BT:Cubic.

We observe in Fig. 2-(c,d) that the completion time for
BT:Cubic is greater than with any other combination of
application and congestion control algorithms, and that the
completion time for UT:uTP and UT:Cubic peers are indistin-
guishable3, so we represent it with a single curve UT:⋆. We
also observe that the shortest completion time is for BT:Nice,
whereas it was for UT:uTP for the homogeneous scenario.

We notice two important changes in the buffer occupancy
for the heterogeneous scenario compared to the homogeneous
one in Fig. 2-(d). The BT:Nice buffer occupancy is closer to
the one of UT:uTP, and a few percent of peers have a higher
buffer occupancy with UT:uTP than with BT:Nice because the
CDF crosses.

In summary, results for the heterogeneous scenario confirm
that application implementation may have an important impact

3This results from UT connection management, that allows on theone
hand UT:Cubic peers to employ reverse uTP traffic, but also forces UT:uTP
peers to send TCP Cubic traffic to UT:Cubic peers with whom they have not
successfully established a uTP connection yet.

(i.e., UT connection management allowing uTP and Cubic
traffic to mix), but also show that the congestion control
algorithm has a significant impact. Contrasting our findings
with related work, the difference of performance between
BT:Nice and BT:Cubic is similar to the one noticed by Testa
et al. using simulations [7], but our results on UT are different
because the simulations presented by Testaet al. do not take
into account the complex connection management policy of
UT.

B. Correlation-based Analysis

We present in Tab. III a correlation based analysis, in
order to compactly summarize our findings and assess whether
differences in the buffer statistics explain the completion time
difference. We compute the median and 90-th percentile of the
Ti andBi metrics, and we evaluate the Spearman’s correlation
coefficient asρ(X(Ti), Y (Bi)). As an example, to compute
the Spearman’s correlation between the 90-th percentile ofthe
queuing delay and the completion time for BT, we define a set
of (50th(Ti), 90−th(Bi)) pairs, where statistics are computed
for any given swarmi ∈BT:⋆. The correlation among the pairs
is then computed over the set of swarms.

Intuitively, the Spearman’s correlation quantifies whether an
order exists between two different metrics. In our case, it will
show whether the order observed for the completion time is
the same as for the buffer occupancy. In more details, while
Pearson’s correlation coefficient is directly evaluated over two
metrics, and expresses the existence of alinear relationship
between them, the Spearman’s correlation coefficient is instead
evaluated over theirrank and expresses the existence of a



TABLE III
SPEARMAN’ S RANK CORRELATION
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50-th 90-th 50-th 90-th
50-th 0.54 0.32 0.10 0.10
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o 90-th 0.36 0.14 -0.30 -0.30

50-th 0.77 0.56 0.62 0.67
90-th 0.76 0.58 0.60 0.69

Multi applications Mono application
{ UT:⋆ ∪ BT:⋆ } { BT:⋆ }

monotonous (but not necessarily linear) relationship between
the metrics.

For the homogeneous scenario, we see that in the BT:⋆ case,
the buffer occupancy and completion time are not correlated.
This is coherent with findings in [17], whereby an additional
delay equal for all peers have only minimal impact on system
performance. Rather, completion time of slowest peers (90-th)
is negatively correlated with delay (recall that slowest BT:Nice
peers complete last). We only observe correlation when we
consider both BT:⋆ and UT:⋆, hinting for an important impact
of application settings.

In the heterogeneous scenario instead, buffer occupancy and
completion time are highly correlated, for both BT and UT
(and even considering BT:⋆ alone). This extends the validity of
previous simulation findings [7] to the real world, additionally
showing that congestion control algorithms, neglected by
previous studies, play an important role as well.

V. D ISCUSSION ANDFUTURE WORK

In this paper, we revisit the bufferbloat problem under a
novel light, i.e., the trade-off between data plane efficiency and
control plane timeliness in distributed systems. We performed
controlled experiments with two different BitTorrent clients
and several congestion control algorithms designed with dif-
ferent aims (i.e., low-priority and high-priority) and strategies
(i.e., loss-based and delay-based).

Though preliminary, this work show important results. We
see that the congestion control algorithm can significantly
impact the completion time, because peers experiencing lower
buffer delays will experience a shorter download completion
time in an heterogeneous scenarios. However, the completion
time and buffer occupancy are uncorrelated in homogeneous
scenarios, which shows that the buffer occupancy alone cannot
explain all observed differences in performance.

As expected, application-layer settings (e.g., dual stack
uTP/Cubic connection management, fine tuning of application
parameters) have a paramount role as well. Specifically, we
found that completion time for peers is the fairest with
uTorrent for both the homogeneous and heterogeneous sce-
narios. Fairness in completion time between users is due to
the dual-stack connection management with an hard-coded
preference toward the low-priority delay-based uTP protocol.
Yet, uTorrent being closed-source, a radical methodological
shift is possibly needed (e.g., capture and parse BitTorrent
traffic) to expose more details (e.g., control information)that
would allow to drill this issue further.

More experiments, on PlanetLab and the wild Internet, are
required to assess the generality of these findings, to ensure
these phenomena to hold in more heterogeneous scenarios,
e.g., with mixtures of congestion control flavors, (BSD-based
MacOS employs TCP NewReno as default TCP flavor, while
Windows and Linux resort to TCP Compound and TCP Cubic
respectively), or considering application-layer limit ofuplink
bandwidth consumed by BitTorrent. Additionally, we would
like to quantify the impact of each parameter (e.g., congestion
control, connection management, etc.) so to give guidelines
for optimal tuning of legacy BitTorrent clients.
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