
ccnSim: an Highly Scalable CCN Simulator
Raffaele Chiocchetti, Dario Rossi, Giuseppe Rossini

Telecom ParisTech, Paris, France – first.last@telecom-paristech.fr

Abstract—Research interest about Information Centric Net-
working (ICN) has grown at a very fast pace over the last few
years, especially after the 2009 seminal paper of Van Jacobson
et al. describing a Content Centric Network (CCN) architecture.
While significant research effort has been produced in terms of
architectures, algorithms, and models, the scientific community
currently lacks common tools and scenarios to allow a fair cross-
comparison among the different proposals.

The situation is particularly complex as the commonly used
general-purpose simulators cannot cope with the expected system
scale: thus, many proposals are currently evaluated over small
and unrealistic scale, especially in terms of dominant factors like
catalog and cache sizes. As such, there is need of a scalable tool
under which different algorithms can be tested and compared.

Over the last years, we have developed and optimized ccnSim,
an highly scalable chunk-level simulator especially suitable for
the analysis of caching performance of CCN network. In this
paper, we briefly describe the tool, and present an extensive
benchmark of its performance. To give an idea of ccnSim
scalability, a common off-the-shelf PC equipped with 8GB of
RAM memory is able to simulate 2-hours of a 50-nodes CCN
network, where each nodes is equipped with 10 GB caches,
serving a 1 PB catalog in about 20 min CPU time.

I. INTRODUCTION

Information Centric Networking (ICN) is a networking
paradigm almost 10 years old. Shortly, observing that the
Internet is now mostly serving popular content (e.g., and
especially video, like in the YouTube portal), ICN architectures
propose that (i) content is split in chunks (ii) each router
becomes a cache for those chunks, so that popular content can
be served more efficiently. Among the many ICN architectures
sprouted in the last decade, the one which has received, by far,
the largest attention is the Content Centric Networking (CCN)
paradigm proposed by Van Jacobson et al. [18]

While numerous proposals1 have seen the day in the ICN
and CCN fields, they have typically been evaluated with
custom simulators, that are not available to the scientific
community. Since this clearly hampers their comparison, and
slows down the ICN/CCN research path, there is need for a
scalable, efficient and common platform on which the different
proposals can be tested and compared.

The problem is however not easy to solve. Indeed, due to
the scale of the problem, the usual simulators such as ns2
[5], cannot be directly used. Still, even that the majority of
the work to date deals with rather simple and small-scale

1As our focus is on the open-source tools available for ICN performance
evaluation, it would be out of the scope of this paper to provide a full literature
review (for a representative sample of recent research on ICN and CCN, the
reader may refer to IEEE INFOCOM NOMEN Workshop, ACM SIGCOMM
ICN Workshop, and the CCNxCON community meeting).

scenarios, especially in terms of dominant factors, like catalog,
network topologies, and cache size. For instance, the YouTube
catalog is estimated to be on the order of 1 PB i.e., 1015 Bytes
(details in Sec. IV-A): yet, largest catalogs considered in the
literature are off by some orders of magnitude (i.e., 20K object
or 138GB [11]). Similarly, while [9] sizes to about 10 GB the
amount of memory that can be addressed at line speed in ICN
architectures, current simulations operate with much smaller
caches (e.g., 6.4MB [20]-50MB [11]).

Of course, the design of a scalable simulator, capable of
efficiently simulating system dynamics at such large scale is
not a trivial task at all. Over the last years, we have devel-
oped and optimized ccnSim, an highly scalable chunk-level
simulator especially suitable for the analysis of CCN caching
performance, that we have released to the scientific community
as open source software [3]. As we will briefly overview in the
following, ccnSim is a modular, flexible, and fast ICN simula-
tor, capable to deal with different caching algorithms/policies,
forwarding strategies, topologies, and popularity laws.

While our previous research has focused on the performance
of CCN gathered through ccnSim [14]–[16], [21], this paper
focuses on the performance of the ccnSim tool itself. Specif-
ically, two crucial aspects have been taken into account in
the design of ccnSim, namely a) Memory occupancy: The
simulation of very large catalogs and very large cache size is
essential to gather CCN performance under realistic settings.
Yet, the CDF of commonly used (i.e., Zipf-based) popularity
distributions cannot be expressed in a closed form: hence, huge
catalogs swell up the memory demand of the simulator; b)
CPU time: system dynamics have to be represented at chunk
level, i.e., a minimal data unit, which is typically packet-
size or slightly larger (e.g., 10KB). Clearly, efficient operation
require a careful engineering and optimization of the most
computationally intensive tasks CCN has to deal with.

In order to reduce CPU time we perform the usual opti-
mization steps: i.e., we profile the ccnSim code, identify the
bottleneck functions and refactory the code responsible of the
largest portion of the execution time. Instead, the memory
occupancy is driven by the scenario requirement: hence, we
expect that in order to simulate the largest possible scenarios,
all the available RAM memory will be used. Since current
off-the-shelf server offer multi-core CPU, we also investigate
the possibility of parallelizing the execution of ccnSim using
Message Passing Interface (MPI).

Overall, our careful engineering of ccnSim allows to sim-
ulate very large scale scenarios in a reasonable time: to give
an idea of ccnSim performance, a common off-the-shelf PC
equipped with 8GB of RAM memory is able to simulate

2-hours of a 50-nodes CCN network, where each node is
equipped with 10 GB caches, serving an Internet-like 1 PB
catalog in about 20 min CPU time.

II. THE CCN SYSTEM MODEL

At high level, a CCN architectures is a receiver oriented
network of caches. When the receiver (client) wishes to get a
content, he sends an interest for a chunk of that content. The
interest travels over all the network, until it hits either a cache
with a temporary copy of the chunk, or the repository that
stores the permanent copy of the content. Then, a data chunk
is sent back toward the client, consuming the interest.

While we refer the reader to [18] for a detailed description
of the CCN architecture, we need to introduce the main system
elements that ccnSim has to implement:

• FIB. Nodes forward interests by looking up their For-
warding Information Base (FIB), that points, for each
content, to the right output interface.

• CS. Every router is equipped with a Content Store (CS),
to temporarily cache received data chunks. When an
interest hits a cache, the corresponding data is sent back
in reply, if cached in the CS, or the interest is forwarded
to another node according to the FIB.

• PIT. Data is forwarded back to the client by using a
Pending Interest Table (PIT) data structure. When a node
receives an interest for a content that is not in its CS,
it forwards the interest according to the FIB, and adds
the incoming interface to the set of interfaces interested
by that chunk in a PIT. When the data travels back, it
is forwarded according to PIT information, and the PIT
information is deleted.

Hence, in CCN, CS acts as a cache, while interests are
forwarded according to FIB information and data is forwarded
according to PIT information. As interest packets and data
chunks travel across CCN nodes, multiple lookups in several
data structures have to be performed. Efficient implementa-
tions of these data structures is thus a key point in ccnSim.

The CCN architecture involves other aspects, like naming
and security, that in our opinion tradeoff with the scalability
requirement. Indeed, CCN needs to perform, for each chunk,
cryptographic computation on the chunk name for security
and correctness of operation. Yet, this computation would
definitively constitute a major CPU bottleneck, which tradeoffs
with our scalability goal, and that we thus prefer to avoid
altogether in ccnSim.

III. SIMULATOR ARCHITECTURE

Basically, ccnSim is a C++ package built on the top of
the Omnet++ [7] framework. In the following, we give an
overview of the set of ccnSim classes, that are illustrated in
Fig. 1, highlighting the key design choices.

A. Catalog and popularity model

Clients represent an aggregate of users who request contents
with a given popularity distribution. Requests for new content
follow a Poisson process, with a customizable rate. In ccnSim,

Core Layer

Strategy Layer

Caching decision

LCD/LCE/RND

Data forwarding

chunk ID [face ID]

content ID face ID

Interest forwarding

Content

ID

Repo

IDs
Size

1 [1,5...] 100

2
3

[2,8...]

Content

IDs

2

4

2

60

C
a

ch
in

g
 L

a
ye

r

LRU/LFU/RND/FIFO

Data caching

Caching replacement
CCN node

Clients

Catalog

[1,4...] 90

Interest

D
a

ta

Repository

FIB

CS

PIT

Chunk id

Fig. 1. ccnSim main components at a glance.

users are not CCN nodes, thus they do not implement the
whole CCN stack. Each aggregate is implemented as an STL
multi-associative map2 that keeps track of different contents
downloaded by individual users.

Popularity model, and hence catalog and content size,
represents a crucial aspect of every ICN architecture. We
have designed and accurately tuned the catalog and popularity
model according to recent literature in Internet metrology (de-
tails in [15]). Size of the files in the catalog is a configurable
parameter, and follows a geometric law by default [17]. For
matters of efficiency, the size of each file is computed during
the simulation bootstrap, and is stored within a large static
array (named catalog in Fig. 1).

We model popularity distribution with a Mandelbrot-Zipf
(M-Zipf), shaped by parameters (q, α), that we statically
initialized during the startup of the simulator, and we employ a
log(N) binary search for each M-Zipf random number (with
N size of the catalog). Notice that while this may seem a
minor implementation detail, a binary search rather becomes
a requirement when the catalog size reaches N = 108 objects
as for YouTube [12]. The popularity model possibly includes
a spatial heterogeneity to account for skew in the popularity
law due to geographical/cultural barriers [16].

B. Messages and chunks

At low level, interests and data messages carry a 64-
bit unsigned integer, namely the chunk identifier. This is a
simplification with respect to the original naming structure
of CCN, that however gives ccnSim an advantage of several
orders of magnitude in terms of memory scalability (e.g., PIT
and CS entries consume about 64bits in ccnSim with respect
to about 1KB in [6], see Sec. V).

The chunk ID stores information about the content name
(most significant 32 bits) and the chunk sequence number
(least significant 32 bits). This design represents a tradeoff
between space and flexibility. On the one hand, we minimize
the space needed for moving content all over the network.

2A multimap is like a simple map, but it considers the possibility of having
more entries with the same key.

On the other hand, we have 32-bit content identifiers (up to 4
billions of individual contents).

C. Node architecture

This simulator is not targeted for a particular topology, and
the user can freely arrange the nodes following her needs.
However, we provide 8 built-in topologies: five of them are
realistic ISP networks (Geant, Abilene, Level3, Qwest, Sprint),
and three are synthetic (random, torus and tree). For each
network, ccnSim is able to build different routing FIBs (either
precomputing the shortest-path and multiple-path based on
standard graph algorithms [15] or possibly with a dynamic
flooding-based exploration [14]). As we can observe from
Fig. 1, a CCN node comprises three different submodules:
core, cache, and strategy layer.

Core layer. Is the responsible for PIT management, and
communicates with caching and forwarding layers. Any new
interest raises a CS lookup. If the data is not in the CS, but
a repository for the given content is attached to the node, the
CCN node returns the data packet back. Otherwise, it deflects
the interest to the forwarding layer. Any data chunk raises
a PIT lookup, that eventually sends the content back on all
the PIT interfaces for that chunk. The PIT is implemented
as an associative map of arrays, indexed by the 64bit chunk
identifier.

Caching layer. Caching is one of the crucial aspects of any
ICN architecture. CS acts according to a caching decision
policy (i.e., whether to store the data in CS or not) and
a replacement policy (i.e., what to drop from CS in case
it is full). While we already provide a fairly large number
of decision (LCD [19], Random [13], LCE) and replacement
policies (LRU, Random, FIFO) we have designed the CS in a
modular fashion. Specifically, new replacement algorithms are
implemented as modules overwriting the caching polymorphic
methods store() and lookup(); a similar trick is done
for new decisions policies with the polymorphic method
isToCache().

At low level, CS is an associative map. Since CS lookups
are very frequent operations in CCN, we optimized their
implementation. In fact, while naive LRU implementations
can represent a drastic bottleneck in large-scale simulation,
we resort to an efficient LRU implementation through a map
of pointers [9] (the map speeds-up the access to the elements
in cache, while pointers are used to take the elements order).

Strategy layer. The strategy layer basically takes decisions
about interest forwarding, through the getDecision()
method. This polymorphic function returns a bit mask with
the same cardinality of the output interfaces set. A 1 in the
i-th position of the mask will forward an interest toward the
i-th interface.

The default strategy layer in ccnSim sends messages toward
the nearest repository over the shortest path (to speed-up
simulation, FIB of each node are pre-filled at the simulation

startup and getDecision() spoofs from the catalog the
repositories who store permanent copies). Other multi-path
strategies, both static [15] and dynamic [14] are already
available, while further strategies can be implemented by
overwriting the getDecision() method.

D. Simulation statistics

Statistic collection starts only when the cache hit metric has
reached a stationary state. In more details, we start with empty
caches and, as soon as caches fill up, every node samples its
hit rate every ts simulated time (usually ts is about hundreds
of milliseconds), and the variance of the collected samples is
computed every tw (usually tw is about tens of seconds).

Only when the cache hit variance falls under a given thresh-
old, the node declares itself stabilized. Statistic collection starts
only after all nodes are stable. The stationary state is then
simulated for a customizable duration (typically one or two
hours of simulation time) after which statistics of interest are
collected (e.g., hit rate, distance, cache diversity, download
time, and so forth).

IV. SIMULATOR BENCHMARK

We now extensively benchmark ccnSim, considering a very
challenging scenario, that we describe in Sec. IV-A. Our
evaluation is structured along two main axis. The first axis
goes along a profiling of the simulator, in order to pinpoint
the function call representing the major CPU bottleneck. Based
on the profiling results, we refactory part of the code to reduce
the execution time as much as possible (Sec. IV-B).

The second axis investigates parallel execution using Mes-
sage Passing Interface (MPI) capabilities. The main driver here
is the fact that, even though the simulator has been designed
to have a small RAM memory footprint, the execution of
large-scale simulation (in terms of the catalog, network and
cache size) will nevertheless sooner or later pose a RAM
bottleneck. Since the typically available off-the-shelf servers
have a large number of cores (typically 4-8, if not more), it is
worth investigating whether the simulation run can be speed-
up by parallelizing the execution of multiple cores (Sec. IV-C).

Finally, we investigate the scalability of the simulation
in terms of the network size, always under the challenging
YouTube scenario, developing a simple model of the require-
ments in terms of memory and execution time that ccnSim
user can expect (Sec. IV-D).

A. Benchmark scenario

As target application for our benchmark, and in reason of
the growing importance of video application in the future
Internet, we consider one of the most popular VoD application
nowadays, namely YouTube. The YouTube catalog is sized at
about 1 PB, as it consists of about 108 files [12] having geo-
metrically distributed size with average 10MB [17]. Contents
are partitioned in 10KB chunks, thus the average file size in
chunks turns to be C=1000 chunks.

As we are not interested on the CCN performance, we
select a synthetic torus topology, and let the network size

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 10 100 1000

%
 o

f
e
x
e
c
u
ti

o
n
 t

im
e

Function ID

Fig. 2. ccnSim profiling. Functions ordered by decreasing execution time.

grow from 10-50 nodes (specifically, from 3×3 to 7×7 torus).
Nodes are equipped with 10GB [9] (or 106 chunks). The
decision/replacement pair considered here, is LCE/LRU (the
most used within the ICN proposals). As for the strategy layer,
interest packets are forwarded toward the nearest repository
along the shortest path.

Clients aggregate are attached to each node, and users
request have average arrival rate of ρ = 20Hz. We instrument
ccnSim to simulate T = 2 hour of simulated time after the
cache hit rate stabilizes. Overall, the number of per-chunk
operation in steady state can be evaluated as ρCTD, with
D average path length, and is thus on the order of [108, 109]
depending on the specific scenario.

Results reported in this paper are gathered on a off-the-
shelf server equipped with Intel Xeon E5620 8-cores CPU
(running at 2.4GHz), and with 12 MB L3 cache and 24 GB
RAM memory.

B. Profiling ccnSim

For profiling, we used the standard GNU profiler gprof,
whose results are shown in Fig. 2 – where for the sake of
the illustration we show only the first thousand functions.
In the picture, functions are ranked by decreasing execution
time percentage. For instance, from Fig. 2 is easy to see
that if the total execution time is 100 seconds, the CPU
has been busy with function having rank 1 for about 3.5
seconds. We see that the curve is slowly decreasing for most
of the ccnSim functions: this means that each function is
individually accounting for only a small fraction of the total
execution time. This is a bad scenario for optimization, as
after profiling, one would reimplement only the few functions
that are representative of the bulk of the CPU time. However,
Fig. 2 shows that such “quick win” approach does not apply
to ccnSim.

Still, the very first handful of functions are responsible for
about 15% of the CPU time. A more in-depth inspection,
reveals these functions to be responsible for providing access
to CCN data structures (CS, PIT, FIB, catalog, etc.) that are
implemented as associative maps, array, and so forth in C++.
As these structures are accessed very often in CCN (basically,
most chunk-based operations will require multiple accesses
into the structures, on multiple nodes), we can reduce execu-
tion time by adopting their most efficient C++ implementation.

We thus consider the two most common libraries to imple-
ment such structures, namely the Standard Template Library
(STL) [22] and the Boost library [1]. The comparison is shown

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

E
la

p
se

d
 t

im
e

-
[m

s]

Number of map locations (x 10
7
)

Boost library
Standard library

Fig. 3. Access time comparison of STL and Boost libraries.

in Fig. 3, that plots the elapsed time of a stress-test program
filling the associative map with different integer sequences.
Even for very simple operations, the Boost library outperforms
the STL of a factor of 4-5. This performance gap is due to
the fact that while STL maps are ordered and implemented
through a red-black tree, Boost maps are fully unordered and
implemented through more efficient hash functions. Appar-
ently, the Red-Black tree maintenance introduces a significant
overhead especially for large structures.

The comparative experiments let us conclude that Boost
is more efficient with respect to the STL implementation we
were using so far. We therefore refactor ccnSim code using
unordered Boost hash-map for any associative map. Notice
that while there is a factor of 4-5 speedup in using Boost, this
will affect only the first handful of functions related to data
structure access. Since these were accounting for about the
15% of the CPU time, we can expect the overall CPU time
after refactoring with Boost to be about 85% of the previous
execution time under STL.

C. Parallelizing ccnSim

A Parallel Discrete Event Simulation (PDES) has basically
two meanings: distributing the model over different computers
as a meaning to reduce the memory occupancy of the simu-
lator; or distributing the model over multiple processors for
optimizing its execution time. In our case, we’re interested
in pursuing the second goal only, since otherwise RAM may
become a bottleneck, leaving many core possibly unused.

Omnet++ has native support of PDES through Message
Passing Interface (MPI). As MPI is a built-in feature, changes
in the underlying ccnSim code are minimal. Among different
parallel algorithms supported, especially worth of interest is
the Ideal Simulation Protocol (ISP) introduced by [10], as
it helps to determine the maximum speed-up achievable by
any PDES algorithm for a particular model and simulation
environment.

We start our experiment plotting the simulation duration as
function of the number of parallel processors over which the
simulations are split up. We set ccnSim for simulating half an
hour of a simpler CCN network (w.r.t. the one described in
Sec. IV-A) after the transient period ended. Results are shown
in Fig. 4, and are rather counterintuitive. In fact, performance
significantly worsens when we increase the number of parallel
processors.

To explain these results, we have to briefly introduce PDES
concepts of lookahead and laziness. The lookahead is asso-

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8

E
x
ec

u
ti

o
n
 t

im
e

-
[s

ec
]

Number of processors

Fig. 4. Simulation duration vs parallelism degree.

 0

 50

 100

 150

 200

 250

 300

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
x
ec

u
ti

o
n
 t

im
e

-
[s

ec
]

Laziness - λ

Multi processor
Single processor

Fig. 5. Simulation duration vs laziness.

ciated with the ability of a logical process (LP) to predict its
future behavior: at any simulation time t, if an LP can predict
that the earliest event it will cause to occur in another LP is
no sooner than t + `, its lookahead turns to be `. Intuitively,
we can say that a small lookahead value badly affects the
performance of the overall PDES system, as LPs have to very
often synchronize among themselves. The system laziness is
then correlated with the frequency at which synchronization
messages are exchanged between different LPs. In more detail,
the laziness is indicated with λ ∈ [0, 1] and represents the syn-
chronization rate, with maximum (minimum) synchronization
rate is achieved for λ equal to 1 (0). Generally, a rule of thumb
in PDES is to roughly approximate the synchronization period
with the system lookahead.

In Fig. 5 we plot the simulation duration as a function of the
laziness λ. The plot shows that increasing the synchronization
rate λ, ccnSim performance tends to ameliorate. At the same
time, the number of synchronization messages, and so the
percentage of time that each individual CPU devotes to the
synchronization task, grow with λ: therefore, increasing λ can
also turn into an excessive overhead (see that execution time
increases for λ > 0.8).

The most important takeaway from Fig. 5 is however that,
generally, single-processor ccnSim execution is more efficient
than its multi-processor counterpart3 We conclude that the
bulk of the CCN operations requires high synchronization fre-
quencies, which entails that CCN simulation has an inherently
small lookahead ` and is thus inherently non parallelizable.

D. Overall performance

Finally, we report the expected simulation time and memory
occupancy for large-scale CCN simulation under the scenario

3The only exception (not shown for lack of space) is represented by the case
of hot-startup, i.e., when caches are pre-filled during a warm-up phase at time
t = 0 with random content, proportionally to the catalog popularity. Since
cache warm-up does not need synchronization (as each cache is independent),
it may result in shorter execution time in PDES.

 8

 12

 16

 20

 24

 28

9 16 25 36 49

E
x
ec

u
ti

o
n
 t

im
e

-
[m

in
]

Number of nodes - N

Execution time
Linear fitting

(a)

 4

 5

 6

 7

 8

 9

9 16 25 36 49M
em

o
ry

 o
cc

u
p
an

cy
 -

 [
G

B
]

Number of nodes - N

Memory occupancy
Linear fitting

(b)

Fig. 6. ccnSim (a) Execution time and (b) Memory occupancy.

described in Sec. IV-A. Fig. 6-(a) plots the running time of a
simulation, as function of the network size. We can breakdown
the total simulation duration ttot (i.e., the CPU time) as the
sum of the bootstrap time tB (e.g., fill the catalog, build
the network, allocate data structures, build reverse index to
speed-up lookup, etc.), plus the cache fill time tF (especially
important in case of cold startup with empty caches), plus
a transient period until the cache hit rate reaches a steady
state tT , plus the CPU time tS needed to run 1 hour of
simulated time (in this case of figure). Simplifying, we can
write ttot = tB + Ntsim where tB accounts for the one-
time startup cost and tsim = tF + tT + tS aggregates the
time spent in running the CCN dynamics per-node. A linear
regression yields to a bootstrap time of tB = 7min and
tsim = 0.3min/node as for the CPU time needed to simulate
2 hour of YouTube catalog. This simple model tells us that
(letting aside RAM bottlenecks) about 2-days of CPU time
are sufficient to simulate 2 hours of YouTube catalog over a
10,000 nodes network with ccnSim.

Fig. 6-(b) depicts the memory occupancy for each indi-
vidual simulation. As we can see, the largest simulated 50-
nodes network requires about 8GB of RAM: thus, despite we
cannot parallelize a single simulation with PDES, we can in
principle run several single-core simulations in parallel4. To
estimate RAM requirements, consider that the catalog stores
several useful information (e.g., the repositories who own
the permanent copies of each content), and that furthermore
every CCN node implements a CS and PIT data structures5.
Fig. 6-(b) plots the memory consumption as a function of the
network size. A linear regression over Fig. 6-(b) data yields
mtot = mC + NmN where mC = 4.5GB is the baseline

4Consider however that this kind of parallelism may tradeoff with the scale
of the scenario. Indeed, the catalog already represents a significant memory
footprint (a 108 array of 64bit integers requires about 1GB of RAM), and
clearly memory requirement grows with the catalog size, the number of chunks
per file, the size of individual CCN caches and the size of the CCN network.

5The FIB does not directly impact RAM requirement, as it could be
responsible for significant RAM footprints only for huge networks.

memory occupancy for handling a YouTube-like catalog (and
all its associated fields), and mN = 80MB/node accounts for
CCN nodes memory requirement (to store FIB, PIT and 106

chunks-long CS data structures).

V. RELATED WORK

While providing a literature review of CCN and ICN is out
of the scope of this work, it is useful to point the reader to [8]
for a general survey of ICN, and to [18] for details of CCN
architecture. Closer work to ours is represented by [2], [4], [6],
that are, to the best of our knowledge, the only CCN-related
software readily available to the scientific community.

In more detail, CCNx [4] is a fully operational prototype
of CCN. However, CCNx does not provide per se any testing,
validation or experimentation capabilities. As such, users have
to instrument ad hoc testbeds or PlanetLab, which is a rather
complex task: as such, this generally requires a preliminary
simulation step in order to understand system dynamics and
define and select the best performing algorithms to implement
in the prototype.

An intermediate step toward the above solution is repre-
sented by ns3 simulation with Direct Code Execution (DCE)
[2] of the (opportunely recompiled) CCNx prototype. This
approach has the advantage of using the same codebase of
CCNx, and additionally simplifies the experimentation. Yet, as
the whole CCNx stack (e.g., including crypto due to security)
is run, this hinders scalability of the simulation.

Finally, yet another option is ns3 simulation with the
ndnSIM [6] simulator very recently developed at UCLA,
which is the closest work to our. Yet, since the primary goal of
ndnSIM is completeness, it is far less scalable with respect to
ccnSim – as the memory footprint of individual PIT and CS
entries is about 2 orders of magnitude larger than in ccnSim.

VI. CONCLUSION AND FUTURE WORK

This work presents and benchmarks an highly scalable and
open-source CCN simulator, named ccnSim. The scalability
of ccnSim is the joint result of key design choice, as well as
a careful engineering (i.e., profiling and code refactoring).

Given the availability of a relatively large number of cores in
current off-the-shelf servers, we explored the parallel (PDES)
execution of ccnSim. Indeed, since for very large scenarios
memory may become a bottleneck, it would have been useful
to exploit all the available cores, that would otherwise remain
idle in a single-core execution. Unfortunately, PDES does not
generally yield to shorter execution time, as due to the small
system lookahead, the major part of the additional CPU power
is wasted in the synchronizing process among processors.

The main message of the benchmarking section is that
scalability issues, either in terms of memory and latency, are
not due to the size of the network. Rather, the main factor
affecting ccnSim scalability is the size of the catalog, espe-
cially for what concerns RAM memory occupancy (that we
have seen to represent the crudest bottleneck). In future work,
we aim at reducing these catalog memory requirements by

smarter representation of each catalog entry (see Sec. III-A).
Indeed, limiting the size of each content to 65536 chunks (16
bit per entry), and the maximum number of repositories in
the network to 16 (using bitmaps of 16 bit), each catalog
entry occupies 4 bytes – a significant reduction compared
to the current implementation requiring 16-76 bytes for 1-16
repositories respectively (32 bits for the file size, plus a 64
bits pointer to an array of 32 bits per repository). To make
a conservative example in the case of single repository, for a
108 items catalog we could reduce memory occupancy from
current 108 · 16 = 1.6GB to about 108 · 4 = 400MB.

ACKNOWLEDGEMENTS

This work has been carried out at LINCS http://www.lincs.
fr. The research leading to these results has received funding
from the European Union under the KIC EIT ICT Labs Project
Smart Ubiquitous Contents (SmartUC).

REFERENCES

[1] Boost homepage. http://www.boost.org/.
[2] Ccn ns3 quick start documentation. http://www-sop.inria.fr/members/

Frederic.Urbani/ns3dceccnx/getting-started.html.
[3] ccnSim homepage. http://www.infres.enst.fr/∼drossi/ccnSim.
[4] Ccnx homepage. http://www.ccnx.org/.
[5] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/.
[6] Ns-3 based named data networking (ndn) simulator. http://ndnsim.net.
[7] Omnet++ homepage. http://www.omnetpp.org/.
[8] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman. A

survey of information-centric networking. Communications Magazine,
IEEE, 50(7):26 –36, july 2012.

[9] S. Arianfar and P. Nikander. Packet-level Caching for Information-
centric Networking. In ACM SIGCOMM, ReArch Workshop, 2010.

[10] R L Bagrodia and M Takai. Performance evaluation of conservative
algorithms in parallel simulation languages. IEEE Transactions on
Parallel and Distributed Systems, 11:395–411, 2000.

[11] Giovanna Carofiglio, Massimo Gallo, Luca Muscariello, and Diego
Perino. Modeling Data Transfer in Content-Centric Networking. In
ITC, 2011.

[12] M. Cha, H. Kwak, P. Rodriguez, Y.Y. Ahn, and S. Moon. I tube,
you tube, everybody tubes: analyzing the world’s largest user generated
content video system. In ACM IMC, 2007.

[13] W. Chai, D. He, I. Psaras, and G. Pavlou. Cache less for more in
information-centric networks. pages 27–40, 2012.

[14] R. Chiocchetti, D. Rossi, G. Rossini, G. Carofiglio, and D. Perino.
Exploit the known or explore the unknown?: hamlet-like doubts in icn.
In ACM ICN, pages 7–12, 2012.

[15] D. Rossi G. Rossini. Caching performance of content centric net-
worksunder multi-path routing (and more). Technical report, Telecom
ParisTech, 2011.

[16] D. Rossi G. Rossini. A dive into the caching performance of content
centric networking. In IEEE 17th International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks
(CAMAD’12), 2012.

[17] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. Youtube traffic characterization:
a view from the edge. In ACM IMC, pages 15–28, 2007.

[18] V. Jacobson, D. K. Smetters, N. H. Briggs, J. D. Thornton, M. F. Plass,
and R. L. Braynard. Networking Named Content. In ACM CoNEXT,
2009.

[19] N Laoutaris, H Che, and I Stavrakakis. The LCD interconnection of
LRU caches and its analysis. Performance Evaluation, 63(7), 2006.

[20] I. Psaras, R. G Clegg, R. Landa, W. K. Chai, and G. Pavlou. Modelling
and Evaluation of CCN-Caching Trees. IFIP Networking, 2011.

[21] D. Rossi and G. Rossini. On sizing ccn content stores by exploiting
topological information. In IEEE INFOCOM, NOMEN Worshop,,
Orlando, FL, March 25-30 2012.

[22] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2000.

