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Abstract

In this work, we propose APLASIA, an holistic architecture with a radical design. Aiming at simplifying the inner

network devices (and so their cost), we tradeoff node architecture- and algorithmic-complexity for an increased (but

tunable) communication cost. The main ingredients of our recipe are (i) the use of complete paths directly in the

frames header, that allows core devices to perform data-plane switching functions without lookup and (ii) the use of

a greedy probabilistic routing algorithm to quickly discover multiple, near optimal, paths in the control plane. We

extensively simulate, analyze and implement our proposal to testify its soundness.

1. Introduction

In the last few years, several research proposals have

addressed the issue of compact routing at the Intranet

[1, 2, 3, 4] or, more recently, at the Internet[5, 6, 7]

level. Often, these architectures employ traditional rout-

ing protocols for their inner-working: as link-state algo-

rithms, such as OSPF or IS-IS, are about 20 years old,

they reveal their limits when used in flat environments.

In this work we present a new holistic proposal for

the underlying multi-path routing of the above archi-

tectures, especially targeting intra-domain routing. Our

proposal sits at a radical point, unexplored so far, in the

network design space, where we tradeoff hardware and

algorithmic simplicity for a slightly increased (but tun-

able) communication cost.

We name our proposal Adaptive Probabilistic Link-

state Architecture Switching in Autoforwarding (APLA-

SIA). In medical terms, Aplasia refers to a congenital

absence of an organ or tissue: in our architecture, this

condition refers to the absence of a Forwarding Infor-

mation Base (FIB) in the switching fabric of core net-

work nodes. We tradeoff the absence of FIB informa-

tion with a minimal increase of frame header size: in

an APLASIA domain, data frames carry a fully specified

source-routed path, so that the next hop interface is al-

ways directly available in the frame header (i.e., data

frames are autoforwarding) and does not require any

lookup.
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We believe Aplasia to be an advantageous condition.

Our reasoning is that data-plane autoforwarding sim-

plifies the nodes hardware architecture (and their cost),

as it eliminates the need to implement FIB data struc-

tures able to cope with link speeds and thus requiring

fast and expensive memories (e.g., TCAM for longest-

prefix match lookup in the IP world, or CAM for Ether-

net switching).

Additionally, to further simplify the nodes inner ar-

chitecture, we reduce the computational complexity of

the algorithm run by control plane software (further

limiting the hardware requirements in turn), that we

again tradeoff for an increased (but tunable) communi-

cation cost. Under link-state algorithms such as OSPF

and IS-IS, topology discovery is performed by running

the Dijkstra algorithm after each node has received all

link-state advertisements. In APLASIA, as the control-

messages accumulate the traveled path directly on the

header, there is however no need to run additional algo-

rithms for path discovery, that can be instead be learnt

and updated on each new control message reception.

Our proposal simply reinforces link-state advertise-

ment with a greedy adaptive probabilistic component,

that builds up on our previous work[8], and generates

an additional bounded number of messages, controlled

through a single parameter that tunes the tradeoff be-

tween path quality and extra messages cost. The algo-

rithm we propose is not only simple and greedy, but is

also able to find multiple paths that are (i) loop-free and

(ii) near-optimal, where the optimality criterion is the
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disjointness of the paths. Furthermore, our results show

path quality to degrade gracefully in case of parameter

misguidance.

This work extends [8] in several directions: from the

algorithmic point of view, we make an analytical cross-

comparison with other routing architectures, and simu-

late the algorithm on bigger realistic networks. Then,

we precisely model the duration of a single advertise-

ment round showing as the model fits well simulation

results. Finally, some practical considerations are made

in order to improve the quality of the paths discovered

(e.g., in terms of path disjointness).

From the architecture point of view (never discussed

in [8]) we accurately design and prototype the forward-

ing plane of APLASIA. Such design is carried by the

practical observation that the original algorithmic solu-

tion is well suitable for a source routed forwarding.

The remainder of this paper is organized as follows.

In Sec. 2 we place our work in the context of related ef-

fort. Then, Sec. 3 details APLASIA’s two main compo-

nents, namely (i) switching in autoforwarding and (ii)

the multi-path adaptive probabilistic link-state routing

algorithm. We investigate APLASIA performance with

simulative and analytical techniques: we focus on prop-

erties such as the path-quality vs message-cost tradeoff

(Sec. 5) and timeliness (Sec. 6). We then report on our

Click implementation in Sec. 7, and conclude the paper

in Sec. 8

2. Background

The tradeoff between the amount of state needed

for routing and forwarding functions, and the qual-

ity of the gathered communication path has been ex-

plored at all layers of the protocol stack and contexts

– from application-layer peer-to-peer overlays, to Inter-

net intra- and inter-domain routing and to lower-layer

access architectures at the network edge.

In the current state of affairs, for instance, IP at-

tempts at solving scalability via hierarchical addressing

and aggregation. However, hierarchy requires location-

dependent names that complicate network management

(e.g., mobility) already at the IP level. Location-

dependent names can provide enough benefits to be-

come appealing only for specialized environments (e.g.,

as in PortLand[9], that leverages positional addressing

to optimize switching on data-centers arranged as a fat-

tree topology). For more general purposes, location-

independent (or flat) names have received a growing in-

terest lately (see [7] for a thorough overview).

While in principle such flat identifiers can be arbi-

trary bit-strings, Ethernet MAC addresses represent per-

haps the best example. Indeed, as Ethernet is the most

widely deployed fixed access technology as of today,

much research effort focused on making Ethernet scal-

able, with relevant research proposals (such as Smart-

Bridges [1], Rbridges [2], Viking [3], SEATTLE [4],

SPAIN [11]) and normalization effort grouped under the

“carrier grade” Ethernet umbrella [12] (of which exam-

ples are IEEE 802.1ah PBB[13] and its traffic engineer-

ing extension IEEE 802.1Qay PBB-TE[14]).

We summarize and compare relevant related effort in

the above areas in Tab. 1, where we list some among the

proposal for scalable routing on flat identifiers from an

Internet[7, 6, 5] or Ethernet perspective [1, 2, 3, 4, 11]

(the latter being closer to our work given our focus on

intra-domain routing). We point out that while each of

these two domains has its own specificity, architectural

solutions can be shared to some extent. Let us focus

on forwarding state scalability first. For instance, in the

Ethernet context, one of the issues concerns the possibly

very large number of hosts – which affects the amount

of state that switches have to keep on the one hand, and

the procedure used for the host resolution on the other

hand. In Ethernet, the space of existing solutions ranges

from MAC address encapsulation (as in IEEE 802.1ah

PPB, so that only the outer MAC addresses, but not the

inner host MAC, are exposed within the domain), to

the use of distributed hash tables (as in SEATTLE [4]

using a One-hop DHT to perform scalable host reso-

lution). Similarly, ROFL [6] applies techniques from

DHTs, though it targets Internet intra- and inter-domain

routing.

Let us now consider the issue of routing and path

quality. In the case of Ethernet, another long studied

issue concerns the limits of the Spanning Tree Protocol

(STP), whose main purpose is to provide loop free paths

between any two nodes in the LAN: here, research has

focused on a more efficient use of LAN resources (e.g.,

by the use of multiple spanning trees) and a faster con-

vergence in case of topology changes or failures. To

get around these limits, again the explored design space

is rather wide, with solution ranging from centralized

approaches [3], to the use of IETF GMPLS[15] con-

trol plane protocol suite to configure PBB-TE devices,

or the use [4] of classical link-state routing protocols

such as OSPF. Yet, even in this case some commonali-

ties can be identified across domains of application, as

at the Internet level ROFL [6] still assumes an underly-

ing OSPF-like protocol to detect link and node failures,

while Disco [7] resorts to a Distance Vector (DV) algo-

rithm to propagate addresses.

APLASIA operates at an unexplored point in the

routing-state vs path-quality tradeoff, as it shifts the
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Table 1: Comparison of related effort

Architecture Host resolution Routing Algorithm complexity Communication

complexity

Multipath

Rbridges[2] Centralized

LS (OSPF) O(NlogN +Nδ) O(Nδ)
No

SEATTLE [4] One-hop DHT No

ROFL[6] Chord DHT No

SmartBridge[1] Centralized Diffusing computa-

tion + BFS

O(Nδ) O(Nδ) No

BANANAS [5] n.a. LS + k-shortest

path[10]

O(Nδ+NlogN+kN) O(Nδ) Yes (k)

Viking [3] n.a. Centralized + multi-

ple runs of [10]

O(N3logN +N3δ) n.a. Yes (2 out of k)

APLASIA n.a. APL O(Nδ) O(Nδ) Yes (2)

routing state from within the core network devices to in-

side the header of messages traveling in the network. In

this work, we do not focus on the name resolution issue

that can be handled, e.g., as in [4]. Rather, we focus on

two system aspects, namely forwarding and distributed

routing protocol, that are necessary to enable the state

shift.

2.1. Forwarding and framing

APLASIA employs source routed paths, with a pecu-

liar path encoding that (i) eliminates the need for for-

warding tables altogether, by fully specifying the se-

quence of output ports directly in the frame header. An-

other nice property of APLASIA framing is the ability

to provide (ii) loop-free paths by design. This is as

opposite to what generally happens in distributed algo-

rithms, where loop-free properties have to be enforced

by the protocol, and are handled e.g., as in DSR[16]

by a TTL field (whose setting is however topology-

dependent and may thus compromise the quality of the

resulting paths) or as in DUAL[17] via diffusing com-

putation techniques.

Framing constitutes an architectural aspect that recent

Ethernet evolutions (such as Q-in-Q, MAC-in-MAC,

PBB-TE, etc. [12]) have dealt with. However, these

approaches merely define new framing capability to en-

hance Ethernet scalability, but do not otherwise impact

the forwarding function. Moreover, such architectures

loose the holistic view of the older technology, and are

no longer plug-and-play, requiring configuration via a

management or control plane, so that we consider a

more detailed comparison out of scope.

It could be argued that the idea of stacking multiple

labels has already been used in other contexts, as for in-

stance in MPLS. We point out that the label purpose and

semantic drift however significantly from ours. Label

stacking in MPLS is indeed generally used for flexibil-

ity and to overcome label space scarcity [18]. Hence,

the depth of the label stack is generally limited, and a

lookup table is still needed to locally translate the label

into the corresponding outgoing port.

Closer work under this angle is represented by Pathlet

routing[19], Disco[7] and BANANAS[5] in the wired

domain, and by Dynamic Source Routing (DSR) [16] in

the wireless one. All these proposals go in the direc-

tion of specifying the full (or portions of the) path in the

packet header, which as stated in [7, 19] introduces low

overhead compared to IPv6 headers (we will come back

to the framing overhead in Sec. 3.2).

For instance [19] proposes to specify portions of

edge-to-edge paths (but not full paths) in the header,

to extend the routing policy expressiveness in the inter-

domain context. BANANAS[5] instead routes along

fully specified path sequences (composed by globally

known nodes and interfaces identifiers) that are however

compactly represented by fixed size hashes. During for-

warding operation, a local table lookup is still needed to

map local link indices to global link ID. However, the

size of the table at each router is limited to log2d as

it depends on the local node degree d, but not on the

network size N – which in medical terms already con-

stitutes a beneficial atrophy of the FIB, but not a full

aplasia.

Finally, in the wireless context, DSR [16] proposes to

fully specify paths directly in the packet header. Differ-

ences from APLASIA lay here in the fact that, as the

wireless medium is generally broadcast, the path can

simply be identified as addresses instead of ports. More-

over, to avoid as possible to occupy the wireless medium

with route discovery, DSR makes extensive use of route

caching at intermediate nodes (and other techniques to

automatically shorten the path if a node further away in
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the unexpended portion of the path overhears a message

reaching a preceding relay). Hence, DSR is engineered

by considering the wireless medium a scarce resource

–antipodean with respect to the abundance of capacity

in APLASIA environments– leading to a completely dif-

ferent architecture design.

2.2. Routing

Broadly speaking, routing algorithms are classified as

Distance Vector (DV) or Link State (LS) approaches.

In traditional LS algorithms such as OSPF and IS-IS,

a full knowledge of the network topology is however

needed, which is gained by broadcasting local infor-

mation among neighbors, after which well-know algo-

rithms such as Dijkstra can be run to compute the short-

est path to any given destination (or more complex algo-

rithms to gather multiple paths). In DV algorithms, rout-

ing tables are updated incrementally at the reception of

each message carrying global reachability information,

while loops are resolved by diffusing computation[17]

and multiple paths are also possibly supported[20]

Routing in APLASIA follows an Adaptive probabilis-

tic link-state (APL) algorithm, where nodes propagate,

as in LS, local connectivity information. At the same

time, APL performs incremental distributed multi-path

computation, and thus inherits some of the desirable DV

properties. In APL each message accumulates the com-

plete traveled path from the advertiser, so that paths can

be updated at the reception of any new control message

(as in DV) with a greedy algorithm. Moreover, APL

supports the computation of multiple paths, via simple

inspection of APL frame header and comparison oper-

ations (unlike in LS), requiring only a minimal amount

of state.

While it is possible to limit the number of messages

exchanged by APL to match LS message complexity

(that already allows to learn multiple paths), however

APL benefits of some additional exchanges (to amelio-

rate the quality of the additional paths). These extra

messages are (probabilistically) sent in such a way that

the APL procedure is not only auto-terminating (as in

DV) and rapidly converging (faster than LS, see Sec. 6),

but the number of messages sent over the whole net-

work remains of the same order of magnitude (with a

fixed, tunable, multiplicative overhead with respect to

LS, see Sec. 5).

Probabilistic decisions are also used in [21], that em-

ploys distributed Ant Colony Optimization (ACO) al-

gorithms, based on swarm intelligence. A set of ants

is spread through the network in order to discover dis-

joint multiple paths, and the pheromone left by the

ants is employed in order to probabilistically avoid al-

ready crossed paths. However, beside the increased al-

gorithm complexity, we point out that the amount of

(pheromone) state kept at each node scales as O(N2),
whereas in O(N) APLASIA2.

Tab. 1 reports the computational and communication

complexity of some relevant related work. Given a

graphG = (V,E), let us denote with N = |V | the num-

ber of nodes in the graph and by δ = |E|/|V | the aver-

age degree. For comparison purposes, let us consider a

classical LS approach, as this is used in close work[4]:

on any topology change, the number of messages sent

over the whole network is O(Nδ), while the com-

putation complexity of Dijkstra is O(NlogN + Nδ).
SmartBridges[1] achieve lower computational complex-

ity but is still limited to a single (shortest) path forward-

ing. BANANAS [5] supports instead multiple paths:

more precisely, after topological information is dissem-

inated with an LS algorithm, nodes in BANANAS run

a k-shortest path algorithm[10], that has a well known

computational complexity equal to O(NlogN +Nδ +
kN) for finding k shortest paths to each of the N desti-

nations.

Unfortunately, as paths found by [10] are however

not guaranteed to be disjoint, this may not be sufficient

neither for load balancing, nor for resilience. A solu-

tion to this problem comes from Viking [3], that how-

ever adopts a centralized incremental approach. The

central node has first to (i) run a k-shortest path algo-

rithm N times (one per each node), gathering k paths

for all (N − 1) destinations, with computational com-

plexity O (N(NlogN +Nδ + kN)); then (ii) for each

N(N−1) source-destination pairs3, it then needs to run

a k-shortest path algorithm on a modified graph4, each

of which has a cost O(NlogN +Nδ + k). Overall, the

computational complexity for the central node amounts

to (i)+(ii)≈ O(N3logN+N3δ) to compute a set of can-

didate paths (out of which only two are then selected).

As reported in [3], this possibly leads to large execution

times, on the order of tens to hundreds of seconds, on a

2Note that our currently ongoing work suggest that this could be

bound to O(1) under certain assumptions that we briefly discuss on

the conclusion section.
3Notice that Viking consider that only an subset of nodes NS <

N can be part of a source/destination pair, whereas the remaining

N − NS nodes only perform switching functions and thus should

not be accounted for in the algorithm complexity. While this also the

likely application scenario for APLASIA, we however prefer to give

computational complexity bounds for the general case.
4In the modified graph, rather than removing the links, the cost

along the k shortest paths is increased by the original graph diameter:

in this way, overlaps are tolerated only when strictly necessary, i.e.,

when the path would otherwise be disconnected.
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8x8 grid even when only 4 out of 64 possible destina-

tions are considered. Also SPAIN [11] points out that it

is “computationally unfeasible to find the best path set

of size k”. Yet, the solution proposed in SPAIN is again

centralized, though greedy and thus less computation-

ally intensive w.r.t [3].

APLASIA aims at finding multiple, as disjoint as pos-

sible, paths with a greedy, simple and distributed ap-

proach. In this paper, we therefore compare the quality

of the path found by APL against the centralized opti-

mum computed as in Viking. However, as Viking fol-

lows a centralized approach, it does not make sense to

directly compare computational and message complex-

ity – rather, we take a classic LS approach as a term

of comparison. As shown in Sec. 5, the communica-

tion complexity of APL remains O(Nδ). It follows

that, in case only a primary and a secondary paths are

maintained, only k = 2 comparison operations are per-

formed for each control plane message, so that the com-

putational complexity per node remains O(Nδ) as well.

Finally, we point out that in all LS-based

approaches[5, 3, 4] a major drawback is that path

computation occurs after dissemination of the topolog-

ical information. Topological dissemination constitutes

a first source of delay in the path construction process.

Yet, gathering multiple paths can further slow down the

process due to the growing computational complexity,

which is especially true in case more sophisticated path

properties are required (e.g., path disjointness as in [3]

with respect to simpler k shortest paths in [5]). The fact

that APLASIA allows to gather paths during topological

dissemination constitutes a first advantage, the lack of

a costly FIB update process[22] a second speedup, and

the simplicity of the algorithm a last one.

3. Architecture overview

APLASIA offers a simple, multi-path, flexible, loop-

free, fast, efficient, tunable and plug-and-play connec-

tivity layer. To reach these goals, we take an holistic

approach and jointly design new forwarding and rout-

ing mechanisms.

To simplify the forwarding in an APLASIA do-

main, edge-to-edge paths are completely specified in the

header of each frame. Hence, forwarding decisions do

not require a table lookup, as the next hop interface is

carried in the header.

APLASIA supports multiple paths toward the same

destination, that can be used in a flexible way on the data

plane (i.e., for backup or load balancing). While the un-

derlying APLASIA algorithm does not limit the number

of paths5 a priori, in this work we limitedly consider

two paths for the sake of simplicity, and as ultimately

selected in Viking [3].

Furthermore, our adaptive probabilistic link-state al-

gorithm yields to a path creation process that is loop-

free (by design), fast (quickly providing the primary and

secondary paths), efficient (as it very often finds optimal

paths) and tunable (in terms of the number of control

messages overhead).

Finally, APLASIA operations rely mainly on a single

parameter, to whose settings we offer guidance through

analytical models, and that simulation results show to be

non-critical in case of misconfiguration. Hence, APLA-

SIA can be safely shipped with a default configuration,

offering plug-and-play operations as it requires no con-

figuration effort.

3.1. Node architecture

APLASIA nodes are addressed by flat identifiers that

are univocally associated with them as in [6, 7, 4], and

can be chosen irrespectively of nodes topological posi-

tion.

Whenever a node intends to send data to another

node, it needs to assembly a frame, specifying the com-

plete APLASIA edge-to-edge path in the frame header

(more details on framing in Sec. 3.2). The frame is then

handed over to the data-plane for forwarding. As a com-

plete path sequence is specified in the header, the frame

is simply pushed to the output interface to which the

Current Hop (CH) frame field points to (CH = 0 at

frame creation, and is incremented by 1 at each hop).

Moreover, all nodes along the path perform the same

forwarding operation, so that no switching table lookup

is performed in the data plane.

Roughly speaking, with reference to Fig. 1, we can

identify two kind of nodes in the network, namely

edge and core nodes: the former can be traffic sources,

whereas the latter only performs switching functional-

ities. APLASIA follows the principle of pushing com-

plexity to the edge of the network, so that core nodes

need to keep only a (i) minimal amount of state (APL

counters) to run the adaptive probabilistic link-state al-

gorithm. Additionally, edge nodes store a (ii) cache of

source routed paths (e.g., stored as an hash-table or as

multiple-disjoint network slices as in [23]). It is worth

pointing out that APL counters are used in the control

plane only during the exchange of routing messages and

that, similarly, the source-routing path cache is used by

5In practice, both load balancing and resilience [23] may benefit

from the use of multiple k > 2 paths.
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Figure 1: Synopsis of APLASIA control-plane routing state and sketch

of data and control frame headers.

edge nodes only at frame generation time. Hence, these

structures are accessed at a much slower rate with re-

spect to the data plane forwarding operation deep in the

core of the network, where a higher level of aggregation

translates into higher speed.

3.2. Autoforwarding frames

While providing full details of APLASIA framing

specification and encoding is out of the scope of this pa-

per, we describe the main fields with the help of figure

Fig. 1, sketching data and control frames.

Aside from usual fields such as frame type, node ID,

flags, QoS indications and checksum, data frames carry

an output path {OPi}i, that represents the set of output

ports to follow edge-to-edge in the APLASIA domain,

along with a CH pointer to the next output port and a

path length field PL. By default, each OPi consumes

8 bits in the header, which is optimized for nodes having

at most 256-ports6.

This choice has a number of advantages, the first of

which is to simplify the rest of the architecture by state-

less forwarding. This simplicity comes at the price of

a (possibly) slightly increased overhead in the frame

header, that grows proportionally to the path length.

To make a rough comparison, consider for instance the

amount of header space devoted to addresses in archi-

tectures such as IEEE 802.1ah PBB[13] or paths in

BANANAS[5]: in the former, MAC-in-MAC frames

carry four 48-bits MAC addresses for a total of 192

bits, while the latter considers 128 bits as “a reasonable

bit budget” for encoding the path in the frame header.

Sticking for the sake of simplicity to 8-bits individ-

ual OPi, these bit budgets translate to 16-24 hops-long

6APLASIA poses no limit to the number of ports per device. An

header flag turns on variable-size output ports identifiers, whose size

depends on a prefix-based notation, inspired by the old classful IP ad-

dressing: i.e., 8 bits for identifiers starting with 0 (allowing to address

27 = 128 ports), 16 bits for 10 (allowing to address 214 ports, and

used only when the port identifier exceeds 27) and so on.

paths. Notice however that while in [13, 5] the 128- or

192-bits overhead is a fixed one, in APLASIA the over-

head is instead variable, as it depends on the length7 of

the data-plane frames path.

To sustain the routing operations in APLASIA, the

control plane makes use of APL frames. Instead

of merely carrying information about individual links

(as in classical link-state algorithms), APL frames ac-

cumulate information about the whole traveled path.

While algorithms based on diffusing computation [20]

already propose to complement link-state exchanges

with information about the path (e.g., the second-to-last

hop), avoiding loops within the network still remains a

fairly complex task. In contrast, APLASIA pushes this

trend even further: as paths are fully specified, it be-

comes trivial to avoid loops during path computation

(Sec. 3.3).

With respect to data messages, control messages

carry additional path information (PI). However, as

the volume of control messages is low with respect to

data exchanges, the overall control plane overhead is

expected to be limited. In more detail, PIi contains,

besides output path OPi, the corresponding node iden-

tifier IDi (useful for loop detection) and input port IPi

(useful for path inference). The PI sequence grows at

each hop during the path computation process. Addi-

tionally, optional information about the estimated path

quality can be conveyed in the header, in the form of

type-length-value (t, l, v) couplets in PIi, to assist traf-

fic engineering operations (out of the scope of this pa-

per).

As control message carries path information, any

edge node, handling or overhearing it, can infer topo-

logical information in a completely passive way: more

precisely, any node receiving a control message that has

already traveled i hops, can in principle learn paths to

any of the previous i − 1 nodes up to the origin, that

can (at node will) populate the source routing cache. As

different messages possibly carry different information,

multiple paths toward the same destination are actually

found. Also, while in principle several criteria are pos-

sible for primary and secondary selection, for the re-

mainder of this work the primary path is expected to

be the shortest path (in terms of hops count). As sec-

ondary path, we instead retain the shortest path most

disjoint from the primary: as this choice reduces the

share of faith between these paths, it improves network

resilience against both failures and traffic surges.

7Hence, in practice the overall overhead can be even lower with

respect to [13, 5], since the path length for some data frames will

likely be shorter than 16-24 hops.
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3.3. Adaptive probabilistic link-state routing

Prior to describe the APL algorithm in detail, let us

describe its main high-level idea. Upon reception of an

advertisement message, nodes take flooding decisions

independently for each of their output links, accumu-

lating the previously discussed path information PI in

frames header. The main idea is that nodes need to

flood a received message at least once, so that shortest

paths are discovered. But nodes actually need to flood

the message multiple times, in order to ameliorate the

quality of the paths found beyond the shortest one. The

original idea in APLASIA is to cut exponentially fast

the number of flooded messages, by retransmitting the

message on each output interface (except the one from

which the message has been received) with probability

P = βCi (1)

where β is a fixed backoff parameter and Ci is a counter,

locally stored by each node, of the number of times the

node has already received an advertisement originated

by i. After having flooded the message on its output

links, Ci is incremented by one unit, decreasing the

odds that the advertisement message of node i will be

flooded at the next reception.

First, notice that in case we set β = 0 (and consider

00 = 1), the number of messages sent by APL matches

that of an LS routing algorithm. Hence, APL only sends

a higher number of messages with respect to classic LS

algorithm when β > 0. At the same time, the use of

an exponential backoff drastically limits the number of

transmitted messages (analytical bound in Sec. 5), mak-

ing thus the approach scalable at the price of a mini-

mal amount of state that needs to be maintained by all

APLASIA nodes – namely, a set of APL counters associ-

ated to node identifiers (i, Ci). For simplicity, this struc-

ture can be thought as an hash of N byte-size8 counters,

with N the number of network nodes9.

In more details, a source node s running the APL

algorithm initiates the advertisement process by flood-

ing an advertisement packet m to all its neighbors. The

flooded message contains a list of node identifiers ID,

initially set to ID[0]=s by the source, to which each

node appends its own identifier. Upon reception of an

8As (1) decreases exponentially fast, a wider counter is not nec-

essary: consider that even for a backoff as high as β = 0.95, it is

unlikely that control messages will be forwarded more times than a

byte-size counter can handle (β255 is on the order of 10−6)
9At the same time this is unnecessary, since due to the auto-

terminating property of the APL procedure, the counter set could

be implemented as a simpler FIFO structure with a small amount

M << N of elements (not discussed further for lack of space)

APLS Algorithm

1: while { node j receives message m on interface

rx} do

2: ℓ← length(m.ID)
3: for all { i ∈ [0, ℓ] } do

4: if {m.ID[i] = j} then

5: exit // Break loop and abort flooding

6: else if { node has source-routing path cache

∧(i = 0) } then

7: d←m.ID[i] // Destination

8: Ljd←(rx,m.IP [ℓ], . . . ,m.IP [i])
9: if { ∄Pjd ∨ |Ljd| < |Pjd|} then

10: Pjd ← Ljd // Update primary path

11: end if

12: if {∄Sjd ∨ (|Pjd ∩Ljd| < |Pjd ∩Sjd|)∨
(|Pjd ∩ Ljd| = |Pjd ∩ Sjd| ∧ |Ljd| <
|Sjd|)} then

13: Sjd ← Ljd // Update secondary path

14: end if

15: end if

16: end for

17: m.ID[ℓ+ 1]← j

18: m.IP [ℓ+ 1]← rx

19: s←m.ID[0] // ID of the advertisement source

20: for all {next ∈ interfaces(j)\rx } do
21: m.OP [ℓ + 1]← next

22: send m to next w.p. βCs

// Adaptive probabilistic transmission

23: end for

24: Cs++ // Update counter associated with node s

25: end while

advertisement frame m, in case the receiver j detects a

loop (finding its identifier within the ID list, lines 4-5),

it discards the message and aborts the flooding proce-

dure.

If the node is a core device performing simple switch-

ing functionalities, then in virtue of the autoforwarding

it does not need to learn source-routed paths (i.e., it can

skip lines 6-15). Otherwise, if the node is equipped

with a cache to store source-routed paths (i.e., is an

edge node) it analyzes, and possibly stores, the newly

learnt path Ljd. Notice that, from a single message, a

node may learn multiple paths, i.e., the backward paths

to all intermediate nodes m.ID[i] until the advertiser

s = m.ID[0]. While this may be beneficial to speed

up the learning process of newly joining nodes, it trans-

lates into a higher computational complexity whenever

done systematically at each APL message reception (by

a factor proportional to the path length, that can be up-

per bounded by the graph diameter). Hence, this feature

is turned off by requiring i = 0 at line 6, but could be
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Network Segment N δ σδ ∆[ms] D

Qwest Core 33 5.0 3.1 5.9 5

DTelekom Core 68 10.4 13.3 17.2 3

Level3 Core 46 11.7 10.1 8.9 4

Sprint Core 315 6.2 6.9 3.2 13

Geant Aggr 22 3.4 1.4 2.6 4

Tiger2 Metro 22 3.6 0.6 0.1 5

Random - 10[2,5] 4 ≈ 4 1 [3, 6]

Table 2: Topological properties of the network scenarios.

turned on for a short while at node startup.

The primary (and secondary) path is first set if not

existent yet. Also, if the newly overheard path is shorter

than the primary path |Ljd| < |Pjd|, then the primary

path is updated with the new candidate. Similarly, if

the overheard path has lower similarity than the current

secondary path |Pjd ∩ Ljd| < |Pjd ∩ Sjd|, or if it has

equal similarity but is shorter than the secondary |Pjd ∩
Ljd| = |Pjd ∩ Sjd| ∧ |Ljd| < |Sjd|, then the secondary

path is updated. Not shown in the pseudocode for the

sake of simplicity, ties in the secondary path selection

are broken at random when also |Ljd| = |Sjd|.

All nodes then add their own identifier and in-

put/output ports to the frame m, the node probabilis-

tically transmits the message with independent deci-

sions per each interface (except the one from which the

message has been received), and updates the per-source

counter Cs.

4. Scenarios and methodology

In the following sections we thoroughly analyze the

performance of APLASIA by means of analysis, Om-

net++ simulationsand Click experiments. Simulations

are run on several network topologies, whose main char-

acteristics (such as size N , average δ and standard de-

viation σδ of node degree, average link propagation de-

lay ∆ and network diameter D) are reported in Tab. 2.

While most of the networks correspond to real topolo-

gies (e.g., either L2 topologies as Geant and Tiger2, or

L3 topologies inferred by Rocketfuel [24]), we also con-

sider Erdos Reny random graphs of variable degree and

size (up to 10,000 nodes), to stress test APLASIA per-

formance (as done in [7]).

Our evaluation focuses on the discovery of a primary

and a secondary path. We compare the quality of APLA-

SIA paths with respect to the optimum gathered via the

centralized solution in Viking[3], and that we described

early in Sec. 2. We instead compare the control plane

overhead against a classic distributed LS algorithm.

Figure 2: Toy case example (quickest vs shortest path)

The remainder of the evaluation is organized as fol-

lows. Sec. 5 investigates by analytical modeling and

simulation the APLASIA path quality vs cost tradeoff

for varying β. We express path quality in terms of con-

nectivity and optimality and path computation cost in

terms of the number of transmitted messages. Then,

Sec. 6 assesses APL system dynamics. We again re-

sort to simulation to estimate the convergence time of

the secondary path, and the duration of the whole ad-

vertisement process. We analytically model the time

evolution of message propagation to better investigate

its auto-termination property. Finally, we report on our

ongoing effort in Click implementation in Sec. 7.

5. Path computation performance

In this section, we dissect several aspects of APLA-

SIA path computation. To gather representative perfor-

mance of APL, we simulate a single complete advertise-

ment round (i.e., where each node performs a single ad-

vertisement), and exhaustively consider all the multiple

computed paths interconnecting any two nodes pair in

the network. For each parameter setting, results are av-

eraged over 20 simulations runs (i.e., to smooth out dif-

ferent randomized advertisement orders and probabilis-

tic decisions). Notice that we do not expect, in practice,

all nodes to learn advertised paths: indeed, core devices

performing only switching functionality will likely re-

main stateless. At the same time, this approach allows

to assess quality of the primary and secondary paths that

APLASIA is able to find between any node pair, thus al-

lowing to get an unbiased picture of APL performance.

5.1. Primary and secondary path quality

We expect APL messages traveling on the shortest

path to reach a node before messages that take longer

paths: this definitively holds in case of homogeneous

delay. Otherwise, it may happen that messages travel-

ing along the quickest path arrive first, which could be

then stored as primary path. As shown by the toy-case

of Fig. 2, this can happen in networks having links with
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very long delays. In Fig. 2, whenever the 2x > 3y con-

dition on the link delay holds, an advertisement from

a will reach node e on the path a − c − d − e before

a − b − e: hence, in this toy case, node f will receive

the message having traveled over the shortest path from

a with probability β.

In practice, simulation results testify excellent con-

nectivity and quality properties of the primary path, as

(i) APLASIA nodes are always connected irrespectively

of β and of the network topology, (ii) when β > 0 the

shortest path is found in more than 95% of the cases

and (iii) the quickest path is selected as primary in the

remaining cases.

Similarly, APLASIA nodes are always connected on

more than one path. Hence, a more challenging goal is

that of finding optimal secondary paths, whose quality

depends on the backoff β. Fig. 3 reports the probability

that the secondary path found by APL is optimal, for all

topologies and varying β (we recall that β = 0 corre-

sponds to the case where APL sends no additional mes-

sages w.r.t a classic LS routing algorithm). As Fig. 3

shows, higher values of β translate into higher quality

of the secondary path (e.g., over 80% of the secondary

paths are optimal for all networks except Sprint when

β = 0.7), although in case of parameter misguidance

(i.e., too low β) the path quality degrades gracefully.
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Figure 5: Refined performance with LoN heuristic.

5.2. Refining APL

We now pin-point the root cause of non-optimality

and propose an effective counter-measure. As pointed

out in [25], in most ASs failures happen nearby to the

edge nodes (at most two hops far), and rarely internally

to the AS topology: hence, paths should be as disjoint as

possible next to the edge origin and destination. Moti-

vated by [25], we cope with this issue close to the source

of the advertisement, by letting the advertiser introduce

PI information for the whole list of its neighbors (LoN)

in the advertisement frame. LoN information is useful

to nodes whose primary and secondary paths overlap

next to the advertiser: as nodes may have gathered paths

toward any of the LoN neighbors during previous adver-

tisement rounds, they may decrease the overlap of the

secondary path by selecting a more disjoint path through

one of the advertiser neighbors.

We report in Fig. 4 the relevance of the above ob-

servation by plotting the position of the overlap in case

LoN is not included in the advertisement frame. Posi-

tion expresses the distance in hops from nodes receiv-

ing the advertisement to the advertisement originator,

so that higher values correspond to overlap next to the

advertiser. Fig. 4 reports a scatter plot of the overlap

position versus the path length, using random jittering

to enhance the visual presentation. Along the diagonal,

we report the percentage of cases (over all topologies)

where carrying LoN in the advertisement message could

have helped in reducing the share of faith (i.e., the over-

lap) between paths.

Fig. 5 reports, at a glance, the quality of the multiple

discovered paths along with the communication cost,

for different networks and values of the backoff param-

eter β. Cost is reported on the left y-axis, expressed

in terms of the number of messages M/N handled by

each node during a single advertisement procedure (av-
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Figure 6: Model vs simulation comparison of the number of messages

per node for varying node degree δ when β = 0.7 (top) and backoff

parameter β when δ = 4 (bottom).

eraged over all advertisements). Path quality metrics are

instead reported on the right y-axis: namely, the proba-

bility to find optimal primary path OP , the probability

of being connected CS on the secondary path, and the

probability that the secondary is optimal respectively

with (OLoN
S ) and without (OS) the LoN heuristic (we

avoid reporting CP as nodes are always connected on

the primary).

Notice that the raw number of messages is very lim-

ited for both values of β, so that we report β = 0.3 as

an example of APLASIA performance under wrong pa-

rameter settings. Then, notice that the shortest path is

discovered in most of the cases and that, especially for

high β, a secondary path is always found. The quality

of the secondary path (i.e., the fact that this secondary

path is the shortest path most disjoint from the primary)

is instead strongly affected by the LoN heuristic. Notice

indeed that LoN affects optimality more than β, as can

be easily gathered by comparing OLoN
S vs OS . More-

over, as OS value without LoN is already high, the use

of the LoN heuristic is able to cope with the remaining

overlaps in Fig. 4, so that APLASIA is very often able to

find optimal secondary paths OLoN
S as well. More pre-

cisely, with LoN heuristic and β = 0.7, more than 80%

of the secondary paths are optimal over all networks in-

cluding Sprint (or more than 98% for all networks ex-

cluding Sprint).

5.3. Modeling the advertisement cost

The total number of control messages M transmitted

over the network during a single advertisement process

can be easily estimated neglecting the actual network

topology. Considering for simplicity a time slotted ex-

ecution of the APL algorithm, we have that if node s
has started the advertisement process, a generic node j
sends δ − 1 advertisement messages (i.e., on every in-

terface except for the interface from which the message

came) with a probability (1) that depends on the num-

ber of times it previously handled the message from the

same advertiser. The total network message count can

then be gathered by simply summing up over all possi-

ble counter values Cj ∈ [0,∞], and taking into account

that all nodes behave the same multiplying by N :

M ≈ N
(

(δ − 1) + (δ − 1)β + (δ − 1)β2 + · · ·
)

= N(δ − 1)

∞
∑

n=0

βn = N
δ − 1

1− β
(2)

Notice that (2) is a conservative estimate of the number

of messages, as we do not take into account that loops

form and thus messages get discarded. A trivial refine-

ment to (2) would be thus to truncate the sum to N , with

a minimal impact as βn becomes negligible for large n.

Above all, (2) shows that the number of messages M
distributed over the network during an advertisement

linearly depends on the network size and average de-

gree δ, and hyperbolically on 1 − β. While (N, δ) are

given by the scenario and cannot be changed in actual

deployment, the exponential backoff β gives a very sim-

ple knob to tune the overhead with respect to LS. The

number of additional messages is off of at most an over-

head factor 1/(1−β) > 1, ensuring APL to be scalable

as the overhead beyond LS is tunable and bounded.

We validate (2) against simulation in Fig. 6, where

we normalize the number of messages over the net-

work size to simplify the comparison over networks

having heterogeneous sizes. We simulate both the real

network topologies early considered (filled circles, to

show model accuracy in practice) as well as random

graphs with varying degree δ ∈ [3, 12] and size N ∈
{100, 1000, 10000} (empty points, to stress test APL).

Fig. 6 reports the number of messages handled per node

M/N during an advertisement round, comparing model

and simulation for varying network degrees (top) and β
values (bottom), from which is easy to gather in both

cases an excellent matching.

Aside the model accuracy, notice that the number of

messages generated is very similar for β ≤ 0.3: hence,

the path quality results shown earlier for β = 0.3 can be

considered as a lower bound for APLASIA performance.

Intuitively, this happens due to the fact that messages are

certainly flooded the first time, which already allows to

discover more than the primary path. Any further mes-
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sage transmission, for higher values of β, contributes to

the refinement of the path quality. However, these re-

finements may come to the cost of an increase of M , so

that alternative techniques (e.g., LoN heuristic) may be

preferable than a mere increase of β.

6. Dynamic system performance

We next turn our attention to the temporal proper-

ties of the system, examining the duration of the path

discovery process, and its auto-termination properties.

Since the propagation time is the dominant delay com-

ponent, we expect time-related properties to be affected

by the geographical extension of the network, with pos-

sibly wide performance variation across scenarios of

Tab. 2. Hence, we also develop a model to gather fur-

ther intuitions on how time-related properties scale with

the network size, without being bound to specific topo-

logical instances.

6.1. Path computation timeliness

First, we assess the path convergence time under

APL, contrasting it with that of classic LS. As it is del-

icate to directly translate LS computational complexity

in a temporal duration (as this depend on the process-

ing speed of the network device), we prefer to resort

to real-world performance of LS algorithms known in

the literature [22] for a comparison. Furthermore, [22]

analyzes a subset of the topologies we consider in this

work (namely, Geant and a large ISP with topology size

slightly smaller than Sprint), so that their findings are

relevant for our analysis.

As [22] points out, the main source of delay in the

convergence of OSPF and ISIS is (i) the FIB update pro-

cess, with times on the order of hundreds of millisec-

onds, that depend on the processor speed (e.g., GRP,

PRP1, PRP2, etc.). The second source is the (ii) execu-

tion of shortest path algorithm that requires tens of mil-

liseconds at the highest processing speed on large net-

works (while, clearly, more sophisticated multi-path al-

gorithms such as those used in BANANAS[5] or, worse,

Viking[3], could significantly raise the impact of algo-

rithm execution on the convergence time). The third

source is (iii) the duration of the flooding process.

We point out that in APLASIA steps (i) and (ii) are

skipped altogether and that multiple paths are already

available during the flooding process, with thus a sig-

nificant gain in the convergence speed. To evaluate the

timeliness of the path computation process we now fix

β = 0.7 as a good compromise between path opti-

mality and extra message cost. Since the primary path
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Figure 7: CDF of the time employed to converge on the selection of

the secondary path (i.e., last execution of line 13 of APL).

is quickly established in APL, path computation con-

verges when a node no longer updates its secondary path

(with respect to the algorithm pseudocode, this time cor-

respond to the last execution of line 13). As before, to

gather unbiased performance, we let each node start an

advertisement, repeating simulation 20 times to average

the probabilistic decisions. During each round, we mea-

sure the time elapsed between the start of the advertise-

ment at the source and the secondary path convergence

at all nodes.

The cumulative distribution function (CDF) of the

path convergence time is reported in Fig. 7 for all net-

works. As expected, the raw duration is mostly af-

fected by the average link delay: for all networks ex-

cept DTelekom (for which the average link delay ∆ =
17.2ms is much larger than that of the other topologies,

cfr. Tab. 2), 90% of the secondary paths converged in

less than 60 ms, and in any case convergence takes less

than 100 ms in the worst case (while in [22], LS con-

vergence takes more than 100 ms in the best case). This

confirms the soundness of APLASIA design, that pro-

vides fast convergence of multiple paths.

6.2. Advertisement auto-termination

We now investigate the temporal evolution of the

message propagation during a single APL cycle. With

respect to Sec. 6.1, we take a complementary view and

focus on the duration of the flooding process over the

whole network, i.e., before the exponential backoff let

the flooding die out.

The objective is not to accurately predict the number

of sent messages, which is in any case bounded by (2),

but to estimate some critical temporal properties, as for

instance the time at which the flooding process reaches

a peak, the time at which it vanishes, the impact of the

network size, etc. We consider again a single adver-

tiser and assume homogeneous propagation delays so

11



that time can be considered as slotted. For all n ≥ 0, the

mean number of messages m(n) sent by the N nodes in

the network at round n satisfies the approximate recur-

sive equation:

m(n+ 1) ≈ m(n)δ
∞
∑

k=0

P (k, n)βk, (3)

whereP (k, n) is the probability that a node has received

k messages until round n. By convention, the advertiser

starts the flooding at round 0 so that m(0) = 1.

The approximation in (3) is valid for large graphs,

say N ≥ 100. For smaller graphs, errors in (3) comes

both from (i) loops that stop the flooding process and

from (ii) the number of edges on which each message is

transmitted, which is approximated by δ. Since a mes-

sage arriving at some node is not sent on the correspond-

ing incoming interface in the actual system, the number

of edges on which the message is broadcasted has a bi-

nomial distribution with parameters N − 1, δ/N : the

corresponding mean is (N − 1)δ/N , which is close to δ
for large N . With respect to our previous notation, we

have that
∑

∞

i=0 m(i) ≈ M : while M counts the num-

ber of messages sent on output interfaces, m(n) counts

all messages in flight at a given round (i.e., including

the one received from the interface where APL avoids

flooding).

Still, the probability distribution P (k, n) in (3) needs

to be estimated. We modelP (k, n) by noticing that each

node has handled M̄(n) =
∑n

i=0 m(i)/N messages on

average up to round n. Since a large number of mes-

sages are sent, the distribution of the number of received

message is approximately Poisson of parameter M̄(n)
at each node, i.e., P (k, n) ≈ e−M̄(n)M̄(n)k/k!. Using

(3), we deduce:

m(n+ 1) ≈ m(n)δe−(1−β)M̄(n) (4)

that we can compute numerically. The quality of the

approximation is illustrated in Fig. 8, showing com-

parison of the numerical solutions of (4) with simula-

tion of random networks, varying the network size up

to N = 10000 at fixed backoff β = 0.7 and degree

δ = 4 for the sake of illustration (similar matches are

gathered for any other parameter settings). For conve-

nience, we normalize the number of messages over the

network size m(n)/N , to ease the comparison over het-

erogeneous network sizes.

The model closely captures the bell shape of the mes-

sage propagation, which confirms that the Poisson as-

sumption holds well in practice. In more details, as

shown in Fig. 8, message dynamics reflect an initial
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exponential rise due to flooding (as counters are ini-

tially 0, hence certainly transmitted since β0 = 1).

As soon as frame duplicates are received over the net-

work, the exponential backoff kicks in and slows down

the message increase, until a peak is reached (at round

npeak = argminnm(n) ≥ m(n + 1) > 0), after which

the number of messages progressively decreases (and

completely stops at about 2npeak).

From the picture, we gather that npeak increases (i)

logarithmically with the network size N , or (ii) linearly

with the graph diameter (since in random graphs the

diameter scales logarithmically with the network size

[26]). This is intuitive, since the flooding slows down

as soon as a node starts receiving multiple copies of the

message, which is always the case when the path length

reaches the network diameter.

6.3. Duration of an advertisement cycle

While (4) is useful to show the auto-termination prop-

erty of APL, it is however not helpful in determining the

duration of the process in real networks, for which we

resort to simulation. Fig. 9 reports the CDF of the du-

ration of a single APL advertisement, averaging over 20

repetitions. Comparing Fig. 9 against Fig. 7, we gather

that secondary path usually converges earlier with re-

spect to the whole advertisement duration. Moreover,

the advertisement still remains short, as it never exceeds
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250 ms for the real topologies of Fig. 9 (nor it would in

a N = 10000 nodes random graph with 10 ms links de-

lay as for Fig. 8, since the number of in-flight messages

goes to 0 before the 15-th round).

7. Click implementation

We have implemented the core APLASIA function-

alities in a Click modular router. Our modules fully

implement the data plane frame processing and mainte-

nance capabilities, but only partly implement APL con-

trol plane functionalities for the time being. To give a

rough idea of the implementation complexity, APLASIA

Click modules account for about 5000 lines of code, 24

classes and 65 functions.

To summarize the main functional blocks, each phys-

ical interface is connected to an APLASIA Port (AP)

module, consisting of two distinct Edge Origin (EO)

and Edge Destination (ED) sub-blocks. These blocks

handle the communication to and from the physical in-

terface, the encapsulation/decapsulation of data from/to

the upper layer, the generation of path discovery re-

quest/reply, etc. To each AP module is associated an

APL module, that assists the AP by duplicating dis-

covery frames to the other ports for path computation.

All AP modules of a node are interconnected through

a single APLASIA Matrix (AM), whose main aim is to

perform the stateless switching function (by inspection

of the APLASIA autoforwarding header) and that holds

node-wide state (such as the path cache and APL coun-

ters).

Primarily, we used the Click implementation for

functional verification of the APLASIA principles. In

this section, however, we report on preliminary experi-

mental results gathered in a small size testbed, that we

use to assess the limits and capabilities of our current

implementation.

The testbed is composed by seven PCs equipped with

dual-core Intel Xeon E3110 CPUs, clocked at 3.00GHz,

equipped with 4 line cards (i.e., four AP and APL blocks

each). PCs are arranged as a bus topology, and are in-

terconnected by two point-to-point 100 Mbps Ethernet

links10. In our setup, the origin node runs in user

space (so that it is easy to access timestamping func-

tions without modifying the Click code), while all the

10In the testbed, we merely use Ethernet cards as point-to-point

transceivers between any couple of routers: in other words, no switch-

ing, learning or other Ethernet functionalities are used. As a side

effect, encapsulation of APLASIA in an Ethernet frame testifies that

APLASIA principles are agnostic to the underlying layer.

others nodes run in kernel mode11.

We devise two simple yet instructive test scenarios to

benchmark the Click implementation, aiming at gath-

ering the atomic duration of (i) data plane forwarding

function tfw and (ii) handling of control plane frames

during the discovery process tcp. In order for the bench-

mark to be the least intrusive as possible, we avoid to

explicit instrumenting the Click code (e.g., by means

of timestamping and click_chatter calls). More-

over, we avoid relying on time synchronization, as the

precision needed to gather reliable figures exceeds NTP

capabilities. Therefore, we decide to infer the atomic

cost of message handling in the data/control plane from

Round Trip Time (RTT) measurements at different path

lengths h. We devise two simple models that account

for the data RTTdp(h) and control planes RTTcp(h)
respectively, that we later fit on experimental data from

our testbed:

RTTdp(h) = 2tg + 2h(ttx + tfw) (5)

RTTcp(h) = 2tg + 2h(ttx + tfw + tcp) (6)

In the above expressions, h represents the path length,

tg is unknown value accounting for the message genera-

tion time in the AP functional block (counted twice due

to the response message), ttx accounts for the message

transmission time over the line card (which is known

and given by the ratio of the actual frame size over the

link capacity). The duration of the stateless switching

operation performed by the AM block on a single data

frame is represented by tfw (i.e., header inspection and

message passing to the right output port), while tcp ac-

counts for messages handling in AP.

We start by determining tg and tfw by fitting (5)

with a first set of experiments, after paths have been

established. We carry on experiments for varying path

lengths h ∈ [2, 6], generating 200 RTT samples per h
value. In order to measure the RTT, we use an APLASIA

OAM tool behaving as the classic ICMP ping com-

mand of IP networks (i.e., automatically generating re-

sponse messages). OAM messages have known size,

which is accounted for in ttx.

Experimental results are reported in Fig. 10, that

depicts, for each hop length, the PDF of RTTdp(h)
(shaded curves in the left plot) and the first 50 samples

gathered during the experiment (points in the right plot).

Both plots also show, with a solid black line, the fit-

ting of (5) gathered using an implementation of the non-

11We point out that, as user-space process can be pre-empted at

kernel level, we gather conservative results that may slightly underes-

timate the actual APLASIA performance.
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Figure 10: Fit of computational cost of data-plane forwarding opera-

tion in the Click implementation.

linear least-squares (NLLS) Marquardt-Levenbergalgo-

rithm. The fit converges to tg = 54µs and forwarding

of tfw = 45µs, with very small asymptotic errors of

0.63% and 0.33% respectively: notice indeed the good

match between the model and experimental data (de-

spite a few outliers, possibly due to the user-space de-

vice).

We finally perform path advertisement experiments

(in a slightly modified setup not detailed for lack of

space), to gather tcp by fitting (6) on further experimen-

tal data. The fitting yields an estimate for the control

plane overhead of tcp = 48µs (with an asymptotic error

of 0.2%), which is thus of the same order of magnitude

of the forwarding operation in the data plane. These re-

sults further highlight the practical interest of APLASIA

and the lightweight of the control plane advertisement

task.

8. Conclusions

We propose APLASIA, a new, flexible network archi-

tecture, requiring simple nodes hardware and little or

no configuration. Stateless operation in the data plane is

achieved by trading switching tables for header space,

as frames carry a fully specified source-routed sequence

of output ports identifiers in the frame header. This

choice has two important consequences: first, APLASIA

frames are autoforwarding, so that core devices need not

to be equipped with (nor to maintain) FIB entries. Sec-

ond, it becomes trivial to ensure that paths are loop-free.

APLASIA supports discovery of multiple disjoint

paths through a simple yet effective distributed algo-

rithm, able to discover nearly optimal path at bounded

computational and communication complexities. The

number of messages exchanged in the control plane re-

mains of the same order of magnitude of classical link-

state algorithms, i.e., O(Nδ), as the use of probabilistic

exponential backoff limits the overhead to a fixed mul-

tiplicative factor 1
1−β

. The algorithm requires simple

comparison operations at each packet reception, so that

the computational complexity is of the same order of

magnitude when the set of paths is limited to k = 2.

We investigate the main APLASIA performance by

means of extensive simulation (on real topologies and

synthetic ones up to 10,000 nodes), analytical modeling

of main systems aspects, and testbed experiments of our

ongoing Click implementation. Our results highlight

several desirable properties (such as auto-termination,

rapid path creation process, near-optimal quality of the

primary and secondary paths, graceful degradation in

case of wrong parameter settings, etc.), that testify the

overall interest for APLASIA.

While this work testifies the overall interest of

APLASIA, it also leaves some open points, that we

discuss in the following.

Larger path sets. While it may be computationally

unfeasible to find the best path set of size k > 2 as

[11] points out, it is however possible to simply find a

set of k paths. Let consider that the algorithm has just

found the primary path (often, the shortest is among

the first to be selected). On the reception of a new

message, the new path will be stored as the secondary

(irrespectively of the path quality, since a secondary is

not existent yet). On a further message reception, the

latest received path will either be elected secondary

(and shifts the secondary in the third position according

to some criterion, which is possibly more complex than

merely requiring disjointness from the primary path),

or will be appended at the end of the list. Later, when

the set of k paths is full, a replacement is possibly

needed, and if the decision does not involve comparison

among multiple paths, then a greedy algorithm would

need to perform (at most) k comparison to take this

decision. Hence, the computational complexity of a

k-path extensions would remain tolerable O(Nδk): at

the same time, while the quality of the resulting set may

be good enough in practice, we acknowledge that this

point requires a careful investigation.

Administrative routing weights. Another open point,

that partly goes against the holistic, plug-and-play na-

ture of APLASIA, concern the ability of “emulating” ad-

ministrative routing weights. In our evaluation, APLA-

SIA treats all link as having equal weight wi = 1, ∀i:
yet, we acknowledge that this choice may clash with

the current ISP practice of employing administrative

weights to bias the construction of the overall topology

by specifying arbitrary costs for given links.
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An interesting question that remains open is whether

it would be possible to tweak administrative weights by

using heterogeneous βi values for different links i (let

aside the problem of configuring the individual devices

with heterogeneous βi), and how to map wi into βi.

Failure resolution. While APLASIA finds multiple

paths, it does not specify how failure resolution should

be handled. In case route cache is stored only at the edge

of the network, then in the worst case (i.e., when failure

happens near the destination), the recovery time would

be on the order of 1.5 RTT (i.e. one RTT to notify the

source, plus the one-way delay for retransmission along

the backup path).

More efficient failure resolutions could happen in

case that (at least some) core devices would be equipped

with a path cache: in this case, the message could back-

track toward the source until a node equipped with a

path cache is found, that could relay the message on the

alternate path (other possible techniques are surveyed in

[27]). As [23] points out, by letting traffic to switch be-

tween paths at intermediate hops, a source gains access

to as many as kl paths to a destination, with k the num-

ber of slices and l the number of switching point on the

path.

Notice that the presence of a path cache on a core

device would not affect stateless autoforwarding in the

data-plane under normal operation. At the same time,

as now some of the core devices need to be equipped

with a FIB, interesting questions would be thus: (i)

to explore the tradeoff between the increased capital

expenditure versus the improvement on failure handling

and (ii) the optimal placement of switching points in

the topology.

Amount of control plane state To simplify the descrip-

tion, we assumed that each node keeps a set of O(N)
counters to take its probabilistic decision. While this

amount of state is scalable with respect to the O(N2)
state required by [21], however it is possible to further

reduce the state space requirements. We point out that

the main issue is not on the raw amount of state, which

is very limited as counters have byte-size (as for prac-

tical purposes β255 can be considered 0), but to ensure

scalability and make a more efficient use of all hard-

ware resources, in spirit with APLASIA (and Ockham’s

razor).

In the normal mode of operation, it will be unlikely

for all nodes to contemporary start advertisement cy-

cles, though it would be desirable to tolerate some con-

temporary advertisements. From the evaluation, we

know that advertisement has a short duration, more-

over slowly growing with the network size. In normal

operation it could be thus easy to desynchronizing the

start of advertisement operations, by simply employing

techniques similar to the Carrier Sense Multiple Access

(CSMA) based approach employed in the original IEEE

802.3 Ethernet LANs.

Without entering in details, we have preliminarily

tested a CSMA-based approach, requiring that nodes

sense whether there is some advertisement ongoing

prior to start a new one: in case they receive some adver-

tisement messages during a carrier sense interval, they

backoff (as in p-persistent CSMA), otherwise they start

the advertisement. The mechanism is imperfect: when

other advertisements already have started in some far-

away region of the network, but no message attains a

node while it performs carrier sense, the latter can start a

new advertisement in turn. However, as opposite to de-

structive interference in medium access protocols, the

start of contemporary advertisement do not lead to se-

vere issue provided that the ongoing advertisement are

counted on a independent counters. In practice, since

the whole duration of the advertisement cycle is sub-

second, is easy to bound the number of concurrent ad-

vertiser (e.g., less than ten with very high probability)

by choosing a carrier sense interval on the order of the

duration of an advertisement (e.g., on the order of hun-

dreds of milliseconds) – leading to a tolerable delay in

normal operation.

As counters need to be reset at each new advertise-

ment cycle, we can implement the counter set as a FIFO

queue: when a new control message is overheard, the

oldest counter is pushed out of the FIFO, and a new one

is inserted and reset. Note that this approach would not

only reduces the amount of state to O(1), but could also

further contribute in making APLASIA plug-and-play as

the good’ol Ethernet. This direction is also part of our

ongoing work on Aplasia.
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