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ABSTRACT

The reduction of energy expenditure of communication networks rep-
resents a key issue for the research community. A promising technique
acting in this direction is known as ‘‘resource consolidation’’. It consists
in concentrating the workload of an infrastructure on a reduced set of
devices, while switching off the others. Deciding on the set of devices
that can be safely switched off requires an accurate evaluation of their
criticality in the network. We define here a measure of criticality that
takes into account not only the network topology, but also the traffic,
and different possible network configurations. We model the scenario
as a coalitional game. Shapley value ranking is efficiently used to drive
the resource consolidation procedure. Numerical results, on real net-
work scenarios, confirm the robustness and relevance of the proposed
index in measuring criticality, yielding a good tradeoff between energy
efficiency and network robustness, and outperforming other classical
indexes.
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Introduction

The carbon footprint of Information and Communication Technologies
(ICT) represents today up to 10% of the global CO2 emissions, accord-
ing do different estimations, and this contribution is constantly increasing
(Webb, 2008; Global Action Plan, 2007). Among the main ICT sectors,
37% of the total emissions are due to telecommunication infrastructures
and their devices, while data centers and user devices are responsible for
the remaining part (Webb, 2008). In such scenario, it is not surprising that
the research community, the manufacturers and the network providers are
spending significant efforts to reduce the power consumption of ICT systems
from different angles.

To this extent, networking devices waste a considerable amount of power.
In particular, energy consumption has always been increased in the last
years, coupled with the increase of the offered performance (Bolla et al.,
2010). Actually, power consumption of networking devices scales with the
installed capacity, rather than the current load (Adelin et al., 2010). Thus,
for an Internet Service Provider (ISP) the network power consumption is
practically constant, irrespective of traffic fluctuations, since all devices con-
sume always the same amount of power. In turn, devices are underutilized,
especially during off-peak hours when traffic is low. This represents a clear
opportunity for saving energy, since many resources (i.e., routers and links)
are powered on without being fully utilized, while a carefully selected subset
of them can be switched off or put into sleep mode without affecting the
level of Quality of Service (QoS) offered by the network.

Different approaches have been proposed in the past to reduce the level
of energy consumption, by pushing it as proportional as possible to the
capacity offered by the network [see Bolla et al. (2010) and Bianzino et al.
(2012a) for an overview]. Among the proposed approaches, the ones referred
to as ‘‘Energy-Aware Routing’’ are of particular interest, as they exploit a
reasonable amount of collaboration and of knowledge sharing among network
devices, so that higher energy savings can be achieved.

In this paper, we face the problem of reducing power consumption in
backbone networks adopting the energy-aware routing approach. In partic-
ular, we discuss an optimal formulation of the problem, and an enhanced
solution, keeping into account the criticality of devices in the considered
network scenario. The proposed criticality metric allows accounting for (i)
the network topology, and the importance of the devices in keeping the
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network connectivity, (ii) the amount of traffic that the devices are routing,
and (iii) different network configurations, corresponding to devices being
turned off to save energy, or, equivalently, failing. Game theory represents
a powerful tool to define such criticality index, in particular, we model the
energy-aware routing problem as a cooperative Transferable Utility Game
(TU-Game), and use the Shapley value of each node (player) to rate its crit-
icality in the specific network scenario. The defined game is referred to as
Green-Game, or G-Game for short, from now on. Finally, we evaluate the
proposed solution on a real network scenario, contrasting it with classical
criticality metrics, showing as our solution outperforms them, being able to
achieve a better tradeoff between energy saving and QoS.

This approach has been previously presented in Bianzino et al. (2011).
With respect to Bianzino et al. (2011), where our main interest was on
the practical exploitation of the results from a networking standpoint, this
extended version provides (i) a more detailed formulation of the G-Game
problem from a theoretical point of view, as well as (ii) a discussion of other
possible extensions of the model, and applications to other problems.

The remaining of the paper is organized as follows. The following section
discusses the formulation of the energy-aware routing problem as an opti-
mization problem, followed by the discussion of the definition of the device
criticality, and the Green-Game formulation. Then, the solution complexity,
and techniques to efficiently solve the Green-Game, in case of complex net-
work scenarios are analyzed. In the next section, we present results for the
Green-Game, when applied to a real network scenario. Finally, we discuss
possible extensions and other applications of the G-Game, and conclude the
paper.

The Optimization Problem Formulation

Once a network has been designed (i.e., the resources that will compose
it have been deployed), a periodical off-line process is applied to optimize
the utilization of resources, which is usually referred to as ‘‘routing opti-
mization’’. This classical process consists, in particular, in determining the
paths used for each origin–destination pair or, equivalently, to ingress–egress
routers in a transit network. A classical optimization objective for Inter-
net service providers is to avoid congestion by, e.g., balancing the traffic as
evenly as possible on the network links, or by ensuring that maximum link
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utilization always remains below a pre-defined threshold. In pure IP net-
works, the path used by each flow is determined by the Internal Gateway
Protocol (IGP), based on link administrative weights. Network dimension-
ing is thus handled by careful weight assignments, for instance using IGP
Weight Optimization (IGP-WO) algorithms (Fortz and Thorup, 2000).

Routing optimization may be effectively used to reduce the energy con-
sumption due to underutilized devices in networks at a given time. This
solution shall of course preserve connectivity and QoS, e.g., by limiting the
maximum utilization over any link. In other words, the required level of
performance will still be guaranteed, but using an amount of resources that
is dimensioned over the actual traffic demand, rather than for the peak
demand. Flows may be aggregated on a reduced set of links, for example,
through a proper configuration of the routing weights in an IP network.

The problem of resource consolidation may be formalized as an optimiza-
tion problem, where the objective is the minimization of the total network
power consumption, and constraints include the classical connectivity con-
straints, and QoS constraints. In more detail, we represent the network as a
directed graph, G = (N,E). N is the set of vertices, whose elements, i ∈ N ,
represent the interconnection nodes (routers, switches, etc.). E is the set of
edges, whose elements e = {i, j} ∈ E, represent the communication links
existing between pairs of nodes i, j ∈ N . We denote by n the cardinality of
N (i.e., n = |N |). For any network element a (node or link), we will denote
by la its load and by ca its capacity, i.e., the maximum load it can support.

The objective is to find the network configuration (i.e., the working point
of the nodes and links of the network) that minimizes the total network
power consumption, expressed as the sum of the consumptions of all nodes
and links. The power consumption of a network element a, node or link, can
be modeled as the sum of (i) a constant part P0,a (corresponding to the idle
power consumption), and (ii) a variable part Pv,a(la/ca), that depends on
the traffic load of the device. The constant part, which is often the predom-
inant term, is always consumed, except when the element is switched off.
To include this on/off status in the model, a binary variable xa models the
status of the element a (xa = 1, whenever a is on and xa = 0, otherwise).
For an arbitrary node i, the variable xi indicates whether i is on or off and
similarly the on/off status of a link (i, j) is modeled by the variable xi,j .
Finally, links are full duplex and they are considered entirely powered on as
soon as one direction conveys traffic. Since in the above graph formulation
the two directions are separately modeled, the link load is the sum of both
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directions loads. With this model, the network total power consumption may
be represented by the following expression (where the first sum is divided
by a factor 2 in order to avoid counting links twice):
1
2

∑
(i,j)∈E

(Pv,ij((lij + lji)/(cij + cji)) + xijP0,ij) +
∑
n∈N

(Pv,n(ln/cn) + xnP0,n).

(1)

The load imposed to the network, seen as a whole, is defined by a traffic
matrix, T = (ts,d)s,d∈N , in which an element ts,d represents the volume of
traffic entering the network through node s and exiting through node d. Such
a traffic matrix only reports traffic loads between sources and destinations,
and does not report what happens inside the network. Each traffic request
from s to d is routed across the network, generating a traffic of fsd

ij over any
link {i, j}. The relationship between the traffic matrix and individual links
loads defines the following set of constraints on each link (ij):

∑
(i,s,d)∈N3

fsd
ij −

∑
(i,s,d)∈N3

fsd
ji =



ts,d, ∀(s, d) ∈ N2, j = s,

−ts,d, ∀(s, d) ∈ N2, j = d,

0, ∀(s, d) ∈ N2, j �= s, d.

(2)

As mentioned above, to preserve QoS, no links should reach a 100% utiliza-
tion. In the general case, the network manager may define a maximum load
percentage, that we will denote by α, which he/she considers safe enough.
Expressing these constraints for every link (ij) in the network defines the
following set of constraints:∑

(s,d)∈N2

fsd
ij = lij ≤ αcij , ∀(i, j) ∈ E. (3)

We further assume node load to be directly proportional to the amount of
traffic entering and leaving the node. For this work, we consider that they
are equal, even though a more complex relationship may be defined. This
translates into the following constraints to our problem for every node n:

ln =
∑

(i,n)∈L

lin +
∑

(n,i)∈L

lni, ∀n ∈ N. (4)

Finally, we consider that a node or a link is switched off if its load is
equal to zero. This allows to relate variables xa and la for any element of
the network through the following sets of constraints:

Zxij ≥ lij + lji, ∀i, j ∈ E, (5)

Zxn ≥ ln, ∀n ∈ N, (6)
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where Z is a ‘‘big’’ number (i.e., greater than twice the maximum between
the nodes and the links capacities), used to force the variable xa to take the
value 1 when a has a load greater than 0, while allowing the device a to be
switched off (i.e., xa = 0) only if la = 0.

Minimizing the total energy consumption (1) while satisfying all the con-
straints mentioned in this section is a mixed integer program, with binary
variables (xa) and continuous variables (la). Results for the formulation pre-
sented above have been discussed in Bianzino et al. (2010) and Chiaraviglio
et al. (2011), considering a range of different power consumption models and
network scenarios.

The Green-Game Definition

The main limitation of the optimization of the energy-aware routing prob-
lem, as presented in ‘‘The Optimization Problem Formulation’’ section, is
the fact that the set of devices to be switched off to save energy is chosen
on the basis of the sole energy costs, and does not take into account the
‘‘criticality’’ of devices in the network scenario. As discussed in Sansò and
Mellah (2009), this may lead to network configurations lacking in robustness
and reliability.

We believe that the resource consolidation process should be driven by an
accurate evaluation of the criticality of devices in the specific network sce-
nario. Some criticality metrics have been defined in the literature for network
devices, in particular, the criticality of nodes in a network can be evaluated
relatively easily based on the sole topology, or on the sole volume of traffic
routed by each node. For what concerns topology based rankings, the most
widely used ones are based either on the connectivity of each node [degree
centrality (Shaw, 1954)], on the number of shortest paths passing through
each node [betweenness centrality (Bavelas, 1948)], on the average distance
between each couple of nodes Closeness centrality (Beauchamp, 1965), or on
the importance of nodes neighbors [Eigenvector centrality (Bonacich, 1972)].
For what concerns the amount of routed traffic, the Least Flow (LF) rank-
ing has been proposed by Chiaraviglio et al. (2009), which ranks devices on
the basis of the amount of traffic they would route in an energy-agnostic
configuration. However, there is no satisfactory definition of the criticality
of nodes in a network, keeping into account at the same time (i) the network
topology, (ii) the network traffic conditions, and (iii) alternative network
configurations.
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Game theory represents a powerful tool to define a criticality index that
accounts for these three aspects at the same time: if we model the resource
consolidation problem as a cooperative Transferable Utility Game (TU-
Game), the Shapley value of each node indicates how much the node con-
tributes in the traffic delivery process, and how its absence would affect the
network on ‘‘average’’ (i.e., over all possible network configurations). This
game, namely the G-Game, takes as its only inputs the network topology, i.e.,
the set of links and devices, and the traffic matrix, i.e., the amount of traffic
routed by the network between each pair of devices. The Shapley value on
the G-Game defines a joint topology-aware and traffic-aware ranking of the
network devices, that can profitably be used to drive the resource consoli-
dation process. In the remaining of this section, we will detail the definition
of the G-Game.

Considering the network notation introduced in the previous section,
between any two nodes i, j ∈ N , data may be transported along one
or several paths. A path is an ordered sequence of vertices pi,j = (i =
i0, i1, i2, . . . , ik−1, ik = j). A path that does not contain twice the same node,
∀ia, ib ∈ pi,j , ia �= ib, is called an acyclic (or loop-less) path. Moreover, we
denote by v the total traffic load that the network has to route, with respect
to a given traffic matrix T : v(N) =

∑
i,j∈N ti,j .

Let us consider an arbitrary subgraph of G, GS = (S,ES) formed by
a subset of the nodes S ⊆ N and by the corresponding subset of edges
ES = {{i, j}: i, j ∈ S} ⊆ E. The amount of traffic that GS can effectively
transport, with respect to T , is denoted by v(S) =

∑
i,j∈S ti,j GS(i, j), where

GS(i, j) = 1 whenever i and j are connected in GS (i.e., there exist a path
in GS from i to j) and zero otherwise. By convention v(∅) = 0.

Let us denote by P(N) the set of parts (i.e., subsets) of N . As N is a
finite set of elements and as v is a function of P(N) into R, the couple
(N, v) defines a coalitional game, precisely the G-Game. A group of nodes
(players), C ⊆ N is called a coalition and the value v(C) is called the
worth (utility) of the coalition C, while v is called the characteristic function
of the game. The problem of determining which network elements can be
safely switched off without disrupting the network can be modeled as the
search for a coalition with the same worth as the full network, but with a
reduced size.

In other words, given any traffic matrix, we need to identify the most
important nodes in the network: in case the problem is modeled as a
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coalitional game, the solution is represented by the Shapley value. The Shap-
ley value averages the marginal contribution of each node over many possible
scenarios, which makes it perfectly suited to find a good tradeoff between
saving energy and preserving QoS.

Let us denote by ΣN the set of permutations over N : ΣN = {σ: N →
N : σ is a bijection}. We also denote by B[i, σ] the set of nodes that appear
before node i with respect to permutation σ, including i itself: B[i, σ] = {j ∈
N s.t. σ−1(j) ≤ σ−1(i)}. B(i, σ) is similarly defined as the set of nodes that
appear before node i with respect to permutation σ, excluding i: B(i, σ) =
{j ∈ N s.t. σ−1(j) < σ−1(i)}. The marginal value of node i ∈ N , with
respect to the order σ is defined as:

mσ
i = v(B[i, σ]) − v(B(i, σ)).

Intuitively, the marginal value of a node according to an order represents
its importance in maintaining the network performance when nodes are
switched off (or fail), one by one, following the order σ. The Shapley value
φi of node i ∈ N is defined as the average of the marginal values associated
to i for all possible permutations of N :

φi =
∑

σ∈ΣN

mσ
i

n!
, (7)

where φi defines a ranking on the nodes, which appears particularly relevant
for our problem. For each node i, φi increases with the number of coalitions
that i participates to and with the importance of i in each coalition. The
Shapley value takes indeed into account the number of primary and backup
paths each node lays on, reflecting the position of the node in the topol-
ogy in a similar way to centrality measures. ‘‘Results on a Real Network
Scenario’’ section provides also a comparison with other classical central-
ity indexes. Exploring every path, the Shapley value grants higher values
to nodes whose removal would disconnect the graph, or to nodes belonging
to small sets whose presence in the network is essential for traffic delivery.
Another important advantage of this approach is that this ranking takes into
account the characteristic function v, defined as the volume of traffic trans-
ported by a coalition. In other words, the higher the value φi for a device i
is, the higher its contribution to traffic routing on average over all coalitions
will be. For more insight on the Shapley value, we refer the interested reader
to Moretti and Patrone (2008).
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On the Efficient Computation of the Shapley Value

The computation of Shapley value according to Equation (7) is computation-
ally expensive, as it requires considering all the n! potential permutations
of N . However, any coalitional game can be decomposed as a linear combi-
nation of unanimity games (Moretti and Patrone, 2008). This decomposition
provides a less expensive method to calculate the Shapley value. For a set
of players N , a unanimity game, (N,uR), is defined over a subset of nodes
R ⊆ N by its characteristic function, uR, which associates to any subset
C ⊆ N a Boolean value: uR(C) = 1 if and only if R ⊆ C, uR(C) = 0
otherwise. By convention, uR(∅) = 0. Any coalitional game (N, v) admits a
unique decomposition in unanimity games over P(N):

v =
∑

C∈P(N)

λC uC , with λC(v) ∈ R,∀C ∈ P(N), (8)

where λC are called the Harsanyi dividends (Shapley, 1953), that are defined
recursively by:

λC =
∑
B⊂C

(−1)|C|−|B| v(T ). (9)

The Shapley value of a node i ∈ N is fully determined by these dividends,
considering all the subsets of N in which i appears:

φi =
∑

C∈P(N); i∈C

λC

|C| . (10)

The complexity of this computation is O(3n), considering that this expres-
sion requires at most a computation of all the 2n Harsanyi dividends. Each
λC(v) computation requires to enumerate all the subsets B included in C

(i.e., 2|C| sets). Ordering the sets C by increasing cardinality, we can thus see
that the total complexity for computing all the dividends can be expressed
as:
∑n

k=0
(
n
k

)
2k = 3n. Even though 3n is asymptotically lower than n!, the

algorithm complexity remains exponential.
Fortunately, a further simplification is introduced in Gómez et al. (2004):

as the Shapley value reflects the importance of a node in the routing process,
we do not need to consider the whole P(N), but only the elements that rep-
resent valid paths in which the node participates. In addition, ‘‘augmented’’
paths shall not be considered. Let us consider two paths, P and Q between
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Figure 1. Toy examples illustrating the Shapley value computation. On
the left graph, two acyclic paths exist between i and j, one augmenting the
other. On the right graph, alternative paths exist between i and j. Dark
arrows represent the traffic request from node i to node j.

i and j, such that Q = P ∪ R. Q is an ‘‘augmented’’ path, since P ⊆ Q.
For example, let us consider paths P = (i, A,B, j) and Q = (i, A,C,B, j) in
Figure 1 (left). Nodes in R = Q \ P (i.e., C in the example) do not provide
any alternative when a node in P is switched off. Therefore, they should
not increase their score for participating in path Q. Note that cyclic paths
are special cases of augmented paths, meaning that only acyclic paths are
of interest.

More formally, let us now denote by ME({i, j}) the set of all acyclic
paths between i and j in G, and let Kij denote the cardinality of this set.
For each path p, we denote by π(p) the unordered set of nodes composing
p. For instance, π ((A,B)) = π ((B,A)) = {A,B}. Let us also denote by
Pk (ME({i, j})) the set composed by all the combinations of the union of
k paths in ME({i, j}). Let us extend the π notation to a set of paths, by
posing π(p) = π(p1)∪π(p2)∪· · ·∪π(pk) for a path p = {p1, p2, . . . , pk}. The
following expression defines the graph-restricted game (Myerson, 1977), by
introducing a characteristic function for an unanimity game that removes
the influence of augmented paths:

ui,j =
Kij∑
k=1


 ∑

p∈Pk(ME({i,j})

(−1)k+1 uπ(p)


 . (11)

To better understand the rationale behind (11), let us consider the toy-
case example of Figure 1 (left). First, the set of acyclic paths is composed
of Ki,j = 2 elements: ME({i, j}) = {p1 = (i, A,B, j), p2 = (i, A,C,B, j)}.
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Applying the previous formula, we may express ui,j as:

ui,j = uπ(p1) + uπ(p2) − uπ({p1,p2})

= u{i,A,B,j} + u{i,A,B,C,j} − u{i,A,B,C,j}
= u{i,A,B,j}.

We may thus neglect the augmented paths and restrict our computations
on the set M∗

E({i, j}) = {P ∈ ME({i, j}) : �Q ∈ ME({i, j}) Q ⊂ P}. For
a given path p ∈ M∗

E({i, j}), the value of uπ(p) is equal to 1 for every subset
of nodes part of this path, leading to a Shapley value increase proportionally
to ti,j and inversely proportionally to the path length. For a path p and
a node h, let us define h(p) = 1 if node h belongs to p, and h(p) = 0
otherwise. Denoting by K∗

ij the cardinality of M∗
E{i, j}, and by φ(i, j) the

Shapley value of the unanimity game ui,j , the Shapley value granted to a
node h is thus φh =

∑
i,j φh(i, j), with:

φh(i, j) = ti,j

K∗
ij∑

k=1


 ∑

p∈Pk(M∗
E{i,j})

(−1)k+1

|π(p)| h(p)


 . (12)

For the sake of illustration, let us consider the example depicted in Figure 1
(right). If we consider that the traffic matrix only has one non-null element,
say ti,j = 1, the resulting Shapley value φ = (φi, φA, φB, φC , φj) is:

φ =
((

1
3
,
1
3
, 0, 0,

1
3

)
+
(

1
4
, 0,

1
4
,
1
4
,
1
4

)
−
(

1
5
,
1
5
,
1
5
,
1
5
,
1
5

))

=
(

23
60
,

8
60
,

3
60
,

3
60
,
23
60

)
.

These values show that the traffic source and destination, i and j, are the
most critical nodes, as their Shapley value is maximal. Then comes A, which
lies on the shortest path from i to j, and finally B and C are granted the
smallest values, as they represent a longer, backup path.

Practical Considerations on Shapley Value Computation

Computing the Shapley value using (12) is still computationally intensive
when considering a realistic, and hence complex, network scenario, so specific
heuristics are needed. First, for every non-null entry in the traffic matrix,
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ti,j , we need to find all valid (i.e., non augmented) paths from i to j. We can
determine these paths using a taboo search procedure (Glover and Laguna,
1997). Taboo search explores the network similarly to a Breadth First Search
(i.e., by neighbors), but with different stopping conditions. To produce valid
paths, the search ignores some branches, avoiding (i) loops and (ii) aug-
mented paths. First, when a branch (i, i1, i2, . . . , in) is explored, the already
visited nodes i, i0, . . . , in−1 cannot be visited again due to the loop-less path
constraint. Then, the branch should also avoid neighbors of preceding nodes,
as this would otherwise lead to augmented paths.

Let us consider for instance the network represented in Figure 2. Let us
consider the path from node 1 to node T and focus on the branch (1, 8, 9).
Node 9 has two neighbors: 21 and 10, but the exploration only needs to
consider node 21. The branch (1, 8, 9, 10) would actually build augmented
paths, such as (1, 8, 9, 10, 11, T ), with respect to the branch (1, 10) that would
reach T with a shorter path (1, 10, 11, T ). Therefore, the exploration has to
skip node 10, as it is already a neighbor of node 1 (i.e., a neighbor of the
predecessor nodes in the branch). The taboo list is then populated by the
set
⋃

n=i,i0,...,in−1
Nn, where Nn represent the set of neighbors of a node n.

Even when only the limited set of valid paths are considered, the Shapley
value computation from (12) becomes intractable as the number of paths

Figure 2. The reference topology.
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grows: the formula requires indeed, for any non-null flow (i, j), to consider
all the possible combinations of the Ki,j paths that have been found, hence
2Ki,j iterations per flow. At the same time, it is usually possible to limit the
value of Ki,j while still obtaining accurate results, by simply bounding the
maximum path length L. Actually, every path brings a contribution inversely
proportional to its length to the Shapley value of each traversed node (as
shown, e.g., in (12)). In addition, the use of very long paths (i.e., greater
than the network diameter) is rare in real networks, as they would only be
used in extreme cases when multiple link/node failures occur simultaneously.
Network design and routing optimization processes seldom consider such
situations, as they are extremely rare. Hence, bounding the maximum path
length to a value L greater than the diameter would not affect the practical
relevance of the solution from a networking standpoint.

Finally, and most important, the Shapley value for the bounded and
unbounded maximum path length become very close provided that the max-
imum path length is large enough. Figure 3 reports the G-Game Shap-
ley value of all nodes, for growing maximum path length L, ranging from
L = 4 hops (i.e., the diameter of the network in Figure 2), to L = 7 hops
(nearly twice the diameter). As we can see, the difference between absolute
Shapley values for L ≥ 6 gets negligible, and, most important, the order of
nodes following the Shapley rank remains the same, confirming that longer
paths, contributions are marginal.
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Figure 4. Number of available paths between 1 and T as a function of the
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The path length bound L makes Shapley value computation feasible.
Figure 4 represents, for example, the number of paths in the set M∗

E({1, T})
for different maximum length L for the the flow between node 1 and node T
in Figure 2. As expected, the number of discovered paths increases rapidly
as the maximum path length grows, until the longest acyclic path is found
(after which the number of available valid paths saturate). Looking more
closely however, we can notice that the path lengths greater than or equal
to 6 are already very ‘‘long paths’’ that are unlikely to be used in an oper-
ational network (at least two nodes should be simultaneously down, e.g.,
2 and 10, or more). Thus, a limit of, e.g., L = 6 hops would allow a reason-
able number of backup paths from the network viewpoint, while at the same
time limiting the number of iterations to just 26 = 64 for the flow (1, T ).

As a conclusion, the use of taboo search and maximum path length lim-
itation considerably reduces the Shapley value computational complexity,
focusing only on paths relevant for the network operation. Moreover, Shap-
ley value ranking for nodes is still accurate if the bound L is appropriately
selected, as a function of the network diameter. In the following, we impose
a maximum path length of L = 7 hops (approximately the double of the
network diameter), which corresponds to the smallest length at which the
Shapley ranking does not evolve anymore (i.e., ranking for L = 6 hops is
identical to L = 7, as shown in Figure 3).

Results on a Real Network Scenario

Once a criticality ranking has been defined, it can be utilized in the energy-
aware routing process to decide the order in which network devices are
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attempted to be switched off. As described in Chiaraviglio et al. (2011),
in fact, a periodical off-line process may be applied to networks. Each pro-
cess occurrence acts in a specific traffic condition [i.e., time period (What
Europeans do at Night, 2009)], and attempts at switching off nodes, one
by one, following the considered criticality ranking (i.e., from the less to
the most critical). A switch off attempt consists in verifying if the network
would be able to work in normal conditions without the considered node,
i.e., deliver all the traffic requests, respecting the QoS constraints imposed
by the network administrator.

In this section, we evaluate the tradeoff between QoS and energy saving,
comparing the proposed ranking with other classical ranking schemes. To
provide a relevant evaluation, we take care of building a realistic scenario.
As far as the network is concerned, we consider the reference topology of
an ISP participating in the TIGER2 project, and the corresponding traf-
fic matrix. This network, depicted in Figure 2, represents a portion of the
ISP access/metropolitan network segment. The light-shaded nodes (1–8)
are access nodes, source and destination of traffic requests, and cannot be
switched off. The dark nodes (9–21) are transit nodes, performing only traf-
fic transport, and can be switched off. Node T is the traffic collection point,
providing access to the core network and the big Internet, with whom nodes
typically exchange the majority of the traffic.

We adopt the node power consumption model proposed by Tucker et al.
(2008), widely accepted in the literature, and already used in Bianzino et al.
(2010). The power consumption Pi (in Watts) of a node, is related to its
switching capability Ci (in Mb/s) according to Pi = C

2/3
i . Since the node

switching capability has not been disclosed for the considered scenario, we
consider that a node is able to switch twice the capacity of its entire set of
connected links. As, in this technological scenario, nodes are responsible for
the majority of the network power consumption (Bianzino et al., 2010), we
focus on methods to switch-off nodes and neglect the energy that might be
further saved by switching off links (i.e., network interfaces).

Considering the different criticality metrics, i.e., the classical ones dis-
cussed at the beginning of ‘‘The Green-Game Definition’’ section, and the
one defined by the G-Game, we can see how node importance in the topol-
ogy is evaluated in the G-Game by taking into account the number of
paths a node lies on, similarly to the betweenness centrality. However, unlike
betweenness centrality, the Shapley value takes into account failure scenar-
ios by considering not only the shortest paths, but also longer paths that
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can provide alternate paths in degraded scenarios. Note that a scenario in
which a node has been switched off to save energy, or the same node fails,
are equivalent from the point of view of the routing, and of the G-Game.

All the above listed criticality indices have been evaluated on the reference
network scenario. We also compare two different versions of the Shapley
value: (i) a simplified index that reflects only the network topology, con-
sidering the G-Game with a uniform traffic matrix, referred to as G-Game
U-TM hereafter; (ii) the full G-Game earlier defined, that considers the
actual traffic matrix. Figure 5 offers a graphical representation of the differ-
ence between the G-Game and the G-Game U-TM: in this representation,
the size and color of a node represent its criticality in the considered game
(the bigger and the darker the node, the higher its criticality). As expected,
the collection point T has the largest worth in the G-Game due the amount
of traffic transiting to/from the big Internet, whereas transit nodes i ∈ [9, 21]
have a lower worth as they are interchangeable. As long as the traffic matrix
is satisfied, there is no preference among transit nodes.

Recall that, to switch off nodes, we are only interested in the order of
criticality among nodes, rather than in the evaluation of the precise values
of node criticality. Therefore, to compare the different rankings we compute
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Figure 5. Node criticality when considering only the network topology in
the G-Game, i.e., G-Game U-TM (left), and when considering also the real
traffic matrix, i.e., the full G-Game (right).
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Table 1. Correlation coefficients between the rankings defined by dif-
ferent criteria.
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G-Game (U-TM) 1.00
Betweenness 0.97 1.00
Degree 0.46 0.53 1.00
Closeness 0.87 0.91 0.62 1.00
Eigenvector -0.01 0.08 0.73 0.18 1.00
G-Game 0.41 0.43 0.25 0.51 −0.02 1.00
LF 0.43 0.49 0.48 0.60 0.19 0.56 1.00

the Paerson correlation coefficients between every pair of rankings. Results
are summarized in Table 1, where coefficients range from −1 to 1: a value
close to 1 reflects a direct correlation (i.e., same order); a value close to −1
reflects an inverse correlation (i.e., inverse orders), and a value close to 0
reflects the absence of correlation. From these results, four families of rank-
ings appear: LF and Shapley value produce singular rankings (i.e., that are
not correlated with any other). Most topology-related rankings (Between-
ness, Closeness, G-Game U-TM) are similar (correlation ∼0.9) and are eval-
uated only through the G-Game U-TM hereafter. Degree and Eigenvalues
also form a distinct family which is omitted below as resulting less pertinent,
and performing poorly.

Energy Savings vs. QoS

Energy saving capability is evaluated with respect to the energy-agnostic
configuration, in which all nodes are powered on (referred to as ‘‘Baseline’’
configuration). We focus on three different node rankings: (i) the one
obtained by the full G-Game, (ii) the one obtained by the G-Game U-TM,
based only on topology, and representative of the ‘‘topology-related’’ ranking
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Table 2. List of the network nodes, ordered (left to right) from the least
to the most critical one, according to different criticality rankings.

Ranking Node ID

G-Game 9 15 13 14 16 21 11 10 20 19 17 18 12 8 5 7 4 3 6 1 2 T
G-Game 5 9 14 20 21 15 13 11 10 4 16 19 6 1 12 17 8 T 7 3 18 2

(U-TM)
LF 9 15 8 7 5 4 21 20 2 3 1 6 14 11 10 19 16 13 12 17 18 T

Note: Underlined values nodes that can be switched off such that the network remains
able to carry the traffic matrix. Bold values indicate nodes considered in the resource
consolidation process.

family, and the (iii) LF ranking, based only on the traffic matrix. The result-
ing orders of nodes are reported in Table 2.

To evaluate the pertinence of the different rankings, we select a set of
nodes that can be switched off by scanning the list sorted by increasing
criticality (i.e., safest first). The algorithm examines each node in turn, by
checking whether its removal, in addition to nodes previously turned off,
would prevent the network from routing the whole traffic matrix (by means
of a linear program). Nodes that can be switched off, for the different con-
sidered orders, are underlined in Table 2. Notice that nodes that can be
switched off are less critical in the G-Game ranking with respect to the LF
ranking: hence, they are found earlier during the list scan.

Indeed, the energy saving objective shall affect neither the offered QoS,
nor the network robustness. Yet, the greedy switch-off approaches considered
so far tend to leave little space to redundancy, and even less means to control
the redundancy level. An alternative option to control redundancy is to
stop the process when reaching a preconfigured target maximum number of
switched off nodes, selected by scanning the whole list if necessary.

To evaluate the impact of this strategy on the reference network, let us
fix a limit of Noff = 3 off nodes, so that at most 25% of the transit nodes
can be switched off at the same time; the nodes selected by each strategy
are those highlighted in boldface in Table 2. After a network configuration
is selected (i.e., after Noff nodes are switched off), we compute the link load
by routing the traffic matrix on the resulting topology: in more detail, we
use TOTEM (Balon et al., 2007) to perform an optimization of the routing
weights (using the IGP-WO algorithm) and route the traffic enabling Equal
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Table 3. Variation of the average path length (in number of hops) and
achievable energy saving, considering different criticality rankings.

Avg. path Energy
Ranking Off nodes length l lTM saving (%)

G-Game 9, 15, 16 2.45 2.99 17.05
G-Game (U-TM) 9, 14, 20 2.92 3.40 13.43
LF 9, 15, 21 2.64 3.25 16.27
Baseline None 2.64 3.13 0.0

Cost Multi Path (ECMP). It follows that we are able not only to evaluate
topological properties, but also to precisely measure the load on individual
links. This is an important point, as the distribution of the link utilization
is a very relevant Traffic Engineering (TE) indicator for carriers.

The resulting energy saving is reported in Table 3, together with the aver-
age path length l; we also report a weighted average path length lTM, where
paths are weighted by the amount of traffic they transport over the traffic
matrix (TM). The increase of the average path length is a logical conse-
quence of switching off some nodes. Notice that the average path length is
minimal for the G-Game, and reduces with respect to the baseline configu-
ration. To get an intuition on how the average path length may decrease by
switching off nodes, let us consider again the toy case of Figure 1 (right),
and suppose for the sake of illustration that traffic shall be shared evenly on
paths (i, A, j), and (i, B,C, j), resulting in l = lTM = 2.5 hops. The resource
consolidation process may disable one of the two paths, bringing either to
an increase (i.e., only the (i, B,C, j) path is available, l = lTM = 3 hops), or
to a decrease (i.e., only the (i, A, j) path is available, l = lTM = 2 hops) in
the average path length, depending on which nodes are switched off.

Finally, Figure 6 reports link utilization distributions for the different
rankings whenNoff = 3 and the baseline configuration (i.e.,Noff = 0). Notice
that the G-Game yields to excellent performances, as the link distribution
is roughly equivalent to the one of baseline configuration, where no node is
switched off. Especially, maximum link utilization does not increase under
G-Game, with respect to the ‘‘all-on’’ network configuration: this means
that energy saving is obtained without compromising the expected QoS.
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Figure 6. Distribution of the link utilization, considering different ranks
and in the Baseline configuration.

Conversely, some links reach an utilization higher than 90% for the U-TM
and LF strategies. The LF strategy results in worse link distribution since it
passes through longer alternate paths (i.e., considers only routing paths as
in the baseline configuration and ignores fault cases), while the worse QoS
results of the U-TM strategy are due to its traffic unawareness (i.e., it takes
into account only the topology). In contrast, G-Game explicitly considers
existing paths for different node combinations, which means that it explores
configurations where some nodes are excluded (i.e., which is precisely what
happens when nodes are switched off in the resource consolidation process).

Possible Extensions and Other Applications

G-Game Extensions to Other Network Scenarios

Different network scenarios, involving different transmission technologies,
may require different resource consolidation approaches. In particular, nowa-
days network routers do not allow sleeping states for the whole device, but
at most for single components (e.g., ports, or linecards). Moreover, the boot-
time of such device is typically non-negligible, so that it may be difficult to
let network nodes sleep in practice.

At the same time, we point out that different transmission technologies
may require power hungry devices (e.g., opto/electronics signal regenera-
tors/amplifiers) along communication links, which may move a considerable
share of the energy consumption from nodes to links. For the above reasons,
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we acknowledge that it may be interesting to apply a resource consolidation
procedure considering network links rather than nodes.

Fortunately, the G-Game formulation of ‘‘The Green-Game Definition’’
section may be properly modified to account for the criticality of links rather
than nodes. In this case, players would represent links, and coalitions rep-
resent set of powered-on links, which are carrying traffic requests. The rest
of the definition remains valid, and the Shapley value computed solving the
G-Game still represents a valuable criticality ranking for links, accounting
for the network topology, the traffic conditions, and the network robustness.
On the other hand, the definition of ‘‘augmented paths’’ is substantially
different: a path which is not offering alternatives in case of node failures
(or switching off), may instead offer alternatives in case of link failures. For
the sake of example, consider again Figure 1 (left). As previously discussed,
with respect to the path {i, A,B, j}, the path {i, A,C,B, j} represents an
augmented path for the node-level G-Game, as it is not offering alternatives
in case of node failures. When considering links as players, instead, the path
{i, A,C,B, j} represents a valid alternative to {i, A,B, j} in the case of link
{A,B} switch-off.

The different definition of paths reflects on the practical computation of
the Shapley values, which can no longer leverage on the taboo search proce-
dure to determine the set of non-augmented paths, but should adopt a more
generic Breadth First Search. As a consequence, other heuristics should be
introduced to make the computation treatable when considering large scale
networks. A preliminary discussion for a formulation of the G-Game consid-
ering communication links as players are presented in Bianzino et al. (2012b).

G-Game Application to Non-Networking Scenarios

We believe that the G-Game, as formulated in ‘‘The Green-Game Defini-
tion’’ section, can be profitably used in the evaluation of the criticality of
other scenarios, different from communication networks.

In particular, scenarios in which fault tolerance is extremely important,
like power or water distribution systems, may be modeled using the G-Game,
considering the connection points as players, and defining a traffic matrix on
the basis of the plant (or spring) productions, and of the use-point requests.

The Shapley value of the obtained game may help in the evaluation
of the criticality of specific connection/distribution points, and drive the
emergency planning procedure.
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Conclusions

Classical measurements for the criticality of a device in a communication
network take into account either (i) the network topology (and limitedly the
shortest path between node pairs) or (ii) the traffic matrix. The G-Game,
that we presented in this paper, provides a powerful way to measure such
criticality, jointly taking into account the traffic conditions and the network
robustness (i.e., possible failure scenarios, and multiple paths between node
pairs beyond the shortest one).

We have compared different criticality rankings, that we use to drive a
resource consolidation process, i.e., to switch off network nodes. Numerical
results on a realistic network scenario show that Shapley value ranking yields
to high energy savings, with little or no impact on the expected QoS levels on
the network: in particular, the maximum link utilization does not increase
much on G-Game with respect to that of the full network scenario (i.e.,
where all nodes are active and no consolidation is in place).

On the one hand, we have shown that G-Game can be applied to prob-
lems outside the networking domain, which is an interesting direction to
explore. On the other hand, the G-Game is flexible enough to solve differ-
ent resource consolidation problems within the networking domain, that is
needed whenever the underlying assumption change (e.g., node versus link
consumption).

Finally, we believe that the criticality index for network devices, as defined
by the G-Game, may be profitably used also in the network design process.
In this case, G-Game may allow, for instance, to distribute the criticality
as much as possible among network devices (i.e., introduce back-up devices
aside the most critical ones, and remove the less critical devices, taking into
account the corresponding investment).

References

Adelin, A., P. Owezarski, and T. Gayraud. 2010. “On the Impact of Monitoring Router
Energy Consumption for Greening the Internet.” In IEEE/ACM International Confer-
ence on Grid Computing (Grid 2010), Bruxelles, Belgique.

Balon, S., J. Lepropre, O. Delcourt, F. Skivée, and G. Leduc. 2007. “Traffic Engineering
an Operational Network with the TOTEM Toolbox.” IEEE Transactions on Network
and Service Management 4(1): 51–61.

Bavelas, A. 1948. “A Mathematical Model for Small Group Structures.” Human Organi-
zation (7): 16–30.



The Green-Game 153

Beauchamp, M. 1965. “An Improved Index of Centrality.” Behavioral Science 10(2): 161–
163.

Bianzino, A., C. Chaudet, F. Larroca, D. Rossi, and J. L. Rougier. 2010. “Energy-Aware
Routing: A Reality Check.” In 3rd International Workshop on Green Communications
(GreenComm3) Miami, USA.

Bianzino, A. P., C. Chaudet, S. Moretti, D. Rossi, and J. L. Rougier. 2011. “The Green-
Game: Striking a Balance Between QoS and Energy Saving.” In 23rd International
Teletraffic Congress (ITC 2011) San Francisco, USA.

Bianzino, A. P., C. Chaudet, D. Rossi, and J. L. Rougier. 2012a. “A Survey of Green
Networking Research.” IEEE Communication Surveys and Tutorials 2(2): 1–18.

Bianzino, A. P., C. Chaudet, S. Moretti, J.-L. Rougier, L. Chiaraviglio, and E. Le Rouzic.
2012b. “Enabling Sleep Mode in Backbone IP-Networks: A Criticality-Driven Trade-
off.” In IEEE ICC’12 Workshop on Green Communications and Networking Ottawa,
Canada.

Bolla, R., R. Bruschi, F. Davoli, and F. Cucchietti. 2010. “Energy Efficiency in the Future
Internet: A Survey of Existing Approaches and Trends in Energy-Aware Fixed Network
Infrastructures.” IEEE Communication Surveys and Tutorials 13(99): 1–22.

Bonacich, P. 1972. “Factoring and Weighting Approaches to Status Scores and Clique
Identification.” Journal of Mathematical Sociology (2): 113–120.

Chiaraviglio, L., M. Mellia, and F. Neri. 2009. “Reducing Power Consumption in Backbone
Networks.” In IEEE ICC’09 Dresden, Germany.

Chiaraviglio, L., M. Mellia, and F. Neri. 2011. “Minimizing ISP Network Energy Cost:
Formulation and Solutions.” IEEE/ACM Transactions on Networking (99): 1–1.

Fortz, B. and M. Thorup. 2000. “Internet Traffic Engineering by Optimizing OSPF
weights.” In IEEE INFOCOM 2000 Tel-Aviv, Israel.

Global Action Plan. 2007. “An Inefficient Truth.” Global Action Plan Report,
http://globalactionplan.org.uk.

Glover, F. and M. Laguna. 1997. Tabu Search. Kluwer Academic Publishers.
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