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Abstract—In this work, we study the caching performance of
Content Centric Networking (CCN), with special emphasis on the
size of individual CCN router caches. Specifically, we consider
several graph-related centrality metrics (e.g., betweenness, close-
ness, stress, graph, eccentricity and degree centralities) to allocate
content store space heterogeneously across the CCN network, and
contrast the performance to that of an homogeneous allocation.

To gather relevant results, we study CCN caching performance
under large cache sizes (individual content stores of 10 GB),
realistic topologies (up to 60 nodes), a YouTube-like Internet
catalog (10° files for 1PB video data). A thorough simulation
campaign allow us to conclude that (i) , the gain brought by
content store size heterogeneity is very limited, and that (ii) the
simplest metric, namely degree centrality, already proves to be
a “sufficiently good” allocation criterion.

On the one hand, this implies rather simple rules of thumb for
the content store sizing (e.g., “if you add a line card to a CCN
router, add some content store space as well”’). On the other
hand, we point out that technological constraints, such as line-
speed operation requirement, may however limit the applicability
of degree-based content store allocation.

I. INTRODUCTION

Content centric networking (CCN) is a promising architec-
ture to diffuse popular content over the Internet. As opposite to
cache devices such as P2P-accelerator or Web proxies, CCN
is content-aware but service-agnostic, so that it promises to
offer a caching service that could not only relieve nowadays
congestion, but would also apply to any future services or
applications as well.

CCN is based on the idea that, instead of caching full
objects, very small data chunks (typically packet-size) should
be cached by CCN routers. Each of these data chunks can
be unequivocally identified by users, i.e., they are named data
chunks. In CCN, user requests for objects are expressed as a
stream of interest packets for named data, that propagate in
the CCN network. As each router in the network can be a
CCN cache (or content store in CCN terminology), whenever
an interest hits a cache, the corresponding named data packet
is sent back in response (and may get cached along the way
back). For reason of space, we cannot provide here a full
overview of CCN inner working — hence, we refer the reader
to [12] for the full details or our previous work [8], [10] for
an overview.

Though the interest in CCN is motivated by the relevance
of the problem it aims to solve, nevertheless an assessment of
the achievable performance is needed to justify the hype. As
CCN is deeply based on caching, this clearly constitutes one of
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the main system aspects that deserve a thorough performance
evaluation.

Caching is definitively not a new topic, with many work
delving into Web caching replacement and decision policies
(see [15] and references therein). Both single-cache and multi-
cache system have been studied, though with limited excep-
tions most work on multi-cache architectures consider a well
structured hierarchy of caches, generally arranged as cascade
or tree topologies [6]. Even more recently, with the interest of
caching studies refueled by information-centric architectures,
cascade [2]-[4] or tree [3], [4], [16] topologies are generally
considered — though studies on caches arranged as arbitrary
networks have started to appear [7], [8], [10], [13], [17].

In our previous work [8], [10], we studied arbitrary networks
of CCN caches with special attention to different caching
replacement (e.g., LRU, MRU, etc.) and decision (e.g., LCD
[14], etc.) policies, and to the use of single vs multiple-paths in
the CCN strategy layer. At the same time, [8], [10] consider
homogeneous cache sizes, i.e., CCN content stores have all
equal size. In this work, we take an orthogonal direction
to [8], [10] and explore whether heterogeneous cache size can
improve CCN caching performance. With this regard, closest
work to our is [9], that studied hierarchies of Web caches,
reaching the conclusion that “stream aggregation (perhaps
more than network topology) is a key factor in optimizing
cache placement”. In [9] the topology is however abstracted
by considering several traces, captured at different depths in
the end-to-end path connecting a Web browser to a Web server
(i.e., end-user client, client proxy after browser cache, network
proxy and end-server).

In this work, we instead take an orthogonal approach to [9],
and explicitly model the network topology as an arbitrary
graphs G = (V, E), of which we compute several centrality
metrics (e.g., betweenness, closeness, stress, graph, eccentric-
ity and degree centralities). We then use the centrality values of
each node as a base for different strategies to heterogeneously
distribute a given amount of cache, measuring the performance
gain (or loss) relatively to an homogeneous CCN network
having the same overall cache amount. Conversely, we refer
the reader to [8], [10] for a more detailed focus on the absolute
performance of homogeneous CCN networks.

Summarizing our main findings, first we gather that, disap-
pointingly, the gain brought by heterogeneity of CCN caches
is very limited. Hence, these results generalize the conclusions
of [9] to an arbitrary graph of CCN caches storing chunk-level
content.



Second, we find that the simplest metric, namely degree
centrality, already proves to be a “sufficiently good” allocation
criterion: this is a rather positive results, as it implies rather
simple rules of thumb for the content store sizing (e.g., the
CCN operational team of an ISP can be safely told that “if
you add a line card to a CCN router, remember to add some
content store space as well”). At the same time, we point out
that technological constraints, such as line-speed operation re-
quirement, may unfortunately limit the applicability of degree-
based content store allocation — since nodes with large degree
must still be able to operate at the aggregate line speed, which
may tradeoff with the cost of building large and fast caches [2].

II. ON GRAPHS AND TOPOLOGIES

To perform a thorough assessment of heterogeneous CCN
content stores, we consider several real topologies and cache
sizing strategies.

First, we consider 5 publicly available network topologies,
that are either available on the Web or through [18]. Assuming
to operate in a non-congested regime, we simulate links having
infinite capacity (so that the delay matches the propagation
delay). Tab. I reports the main characteristics of each graph
G = (V, E), namely, the network size |V, the average degree
|E|/|V], the coefficient of variation of the node degree CoV,
the average link propagation delay § and graph diameter D.
Next, for each topology, we compute the following graph-
related metrics.

o Degree Centrality: DC(n) is defined as the number
of links incident upon node n (as we consider bidi-
rectional graphs, we do not differentiate between inde-
gree/outdegree).

o Stress Centrality: SC(n) reflects the total number of
shortest paths (or geodesics) between all other nodes
which run through n. It is defined as BC(n) =
2 vstevin (8, t,n), with o(s, t, n) the number of short-
est paths from s to ¢ through n.

+ Betweenness Centrality: BC(n) reflects how often
the node n lies on the shortest paths between all
the other nodes of the network. It is defined as
BC(n) = 3 ysiev\nd(st,n), where §(s,t,n) =
o(s,t,n)/o(s,t) is the fraction of all shortest paths
between s and ¢ which run through n. In a sense, it is a
normalized version of SC.

o Closeness Centrality: CC(n) relates to the distance of
n to all the other nodes in the network: the lower the
total distance toward all other nodes, the more the node
is central in the topology. It is defined as the invert sum
of the shortest path distances of node n from all other
nodes, CC(n) = 1/ (ZVSEV\n d(n, s)) where d(n, s)
is the length of the shortest path from n to s.

e Graph Centrality: GC(n) relates to the distance of n
to the farthest node: nodes with high GC have short
distances to all other nodes in the graph. It is defined
as the invert of the maximum of all geodesic distances
from a node to all other nodes in the network, i.e.,

TABLE I
NETWORK TOPOLOGIES.

Segment | [V] [ [E[/[V] | CoV [ é[ms] | D
(a) Abilene Core 11 2.54 0.19 11.3 8
(b) Tiger2 Metro 22 3.60 0.17 0.11 5
(c) Geant Ager 22 3.40 0.41 2.59 4
(e) Level3 Core 46 11.65 0.86 8.88 4
(d) DTelekom | Core 68 10.38 1.28 17.21 3
TABLE 11
CORRELATION COEFFICIENT E[p] AMONG CENTRALITY METRICS.
E[p] DC BC CcC EC GC SC
DC 1 0.802 0.846 -0.523  0.538 0.903
BC . 1 0.884 -0.655 0.674 0.949
CcC . . 1 -0.790  0.794 0.906
EC . . . 1 -0.984  -0.633
GC . . . . 1 0.652
SC 1

Note: E[p] is a;/eraged over the 6 topolog-ies: the standard deviation is
std(p) < 0.167 for any metric-pair, and the coefficient of variation is
always below std(p)/E[p] < 0.310

CC(n) = 1/maxyscvd(n, s) where d(n, s) is the length
of the shortest path from n to s.

o Eccentricity Centrality: EC(n) reflects how far, at most,
is node n from every other node It is defined as the largest
geodesic distance EC(n) = maxyscyd(n,s) and thus
mirrors the GC definition.

The relationship among the different criticality scores is ex-
presses in Tab. II, that reports the average over all topologies
of the correlation coefficient between any two sets of centrality
values'. Though this list is non exhaustive, as other metrics
(e.g., the lobby index, etc.) could be included as well, it is
nevertheless already fairly representative. It could be rather
objected that it is redundant to consider so many centrality
metrics, especially since some of them are similar (e.g., BC
and SC) or strongly negatively correlated (e.g., EC and GC).
Still, we point out that each metric has its own pros and cons.
Consider for instance EC and GC. On the one hand, it could
be argued to give more cache space to high-GC nodes, as
they have short distance to all other nodes in the graph, and
may thus act as “shared hubs” for content requests passing
by. Conversely, it could also be argued to give more cache
space to high-EC nodes exactly since they are faraway in the
topology: otherwise, their requests may induce higher load on
many CCN routers in the path, unless they could be filtered
out by having access to a larger amount of cache.

Let us define Cy,; as the overall size of cache in the
topology. In the case of homogeneous network, we fix the size
of the individual caches to C; = 10 GB, that [2] points out
to be about nowadays technological limit due to line speed
requirement. In other words, CCN routers must be able to
service each interest packet by doing a lookup for content in
real time (similarly to IP longest prefix matching lookup for
addresses). Hence, memory access speed (and cost) limits the

I'To simplify the visual presentation, we report only the matrix values above
the diagonal: we point out that the correlation coefficient is invariant to the
order of the vectors, and hence the matrix is actually symmetrical.
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Fig. 2.  Pictorical representation of cache sizing, with CCN content store
size proportional to the size of node in the corresponding graph. The picture
reports (a) homogeneous and (b) heterogeneous cache sizes (in the latter case,
proportional to the betweenness centrality BC index).

practically achievable content store size [2].

In the case of homogeneous networks, Cix = |V|C;
with |V| the number of nodes in the network. In the
case of heterogeneous networks, we exploit the central-
ity scores as follows. Consider a generic metric X &
{CC,GC,DC,EC,SC, BC}, where we denote by X (i) the
value of X for node ¢ € V for the considered topology. We
then adopt two criteria for cache sizing:

Pon X (i) :
Cx(i) = CtotizjevX(j) ,V (1
C%(i) = max (¢, [CX (i) /c]e) 2)

Notice that (1) corresponds to a perfectly proportional
criterion, where the cache size C'{(4) is distributed to the i-th
node proportionally to the metric X (¢) normalized over the
sum of the X (i) score over the whole graph. An example
of the (1) strategy computed for all centrality metrics on the
Geant network is reported in Fig. 1 (where the centrality
metrics X are sorted top to bottom by decreasing coeffi-
cient of variation of the score o(X)/FE[X]). For the sake
of illustration, Fig. 2 depicts nodes of variable size, whose
radius is proportional to the cache size C(i), to visualize
where in the network the cache resource have been allocated.

Specifically, Fig. 2 contrasts an homogeneous Geant network
where C(i) = Cio/|V| for all nodes (left plot) with the
heterogeneous Cgc(i) allocation (right plot) corresponding to
the largest skew in the cache resource allocation (as seen in
the top plot of Fig. 1). Clearly, the other centrality metrics will
provide allocation skews in between these two extremes.

While (1) is an ideal strategy that allows to gauge the
relative importance of the centrality score, we acknowledge
that it may be hardly feasible in practice: indeed, CCN content
store modules will be quantized in multiples of a unit module
¢, as it happens for nowadays RAM memory. As such, we also
consider a quantized strategy (2), where the size of individual
caches Cﬁg(z) is multiple of ¢ = 1GB units. The model
assumed by (2) is that will ISPs invest in a fixed number
of memory modules Cy,:/c that they can then arbitrarily
deployed in the network. The viewpoint we adopt in this work
is that an ISP may wish to reallocate the C},;/c cache modules
at its disposal (e.g., moving from an homogeneous setup to an
heterogeneous one), so to optimize the achievable performance
without incurring in further capital expenditure.

Notice that the quantization process induces an error so that
the overall cache amount is now Cin(1 + €) with € € R
the error induced by the quantization process. This error
is due to two contrasting operations> in (2) that somehow
compensate (the average error is Ele] = 2.3%). It could
be argued that any difference in terms of performance (e.g.,
cache hit gain) may be due to discrepancy in the quantized
cache size (e.g., when € > 0). To rule out this possibility, we
verify the absence of correlation between these discrepancies.
More formally, denote Hc,,s: the cache hit probability of the
homogeneous network, with overall cache size Cy,:. Denote
then by H§§ = (1 4+ v)Hcgonst the cache hit of an het-
erogeneous network with quantized cache allocation strategy
according to the centrality measure X, with overall cache size
Yiev Cg‘g(z) = (1 + €)Cyot. The correlation coefficient p.
between the series of (v, €) pairs gathered over all networks
and centrality measures, equals p,. = 0.05, ruling out
any correlation between these errors. As such, performance
differences in the following solely depend on the centrality
metrics.

Notice that Fig. 1 and Fig. 2 highlights variation in the
cache allocation according to different centralities for the same
topology. In Fig. 3 we finally reports a complementary view,
showing the same centrality index (namely, BC) for all topolo-
gies. The x-axis represents the normalized node ID i/|V|,
sorted by increasing BC index; the y-axis instead reports the
cumulated fraction of content store size }__ CE-(i)/Crots
where we consider a proportional allocation strategy for the
sake of illustration. It can be seen that in the DTelekom and
Level3 network, BC index defines a very skewed allocation,
with few nodes taking the most of the cache. Conversely,
Geant, Abilene and Tiger provide a more balanced allocation
(approaching the constant allocation depicted as a reference).

2The max operation imposing a minimum cache size ng (i) >c VX,i
increases €, while the ceiling operation reduces e
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III. PERFORMANCE EVALUATION
A. Simulation scenario

To gather relevant results, we study CCN caching perfor-
mance under realistic topologies (up to 60 nodes), large cache
sizes (individual content stores of 10 GB), and YouTube-like
Internet catalog (108 files for 1PB video data). Notice that our
simulator, which we make available as open source software
at [1], manages to achieve a much larger scale with respect to
current literature [2]-[4], [7], [13], [16], [17].

We repeat simulations 20 times, with each simulation lasting
for the minimum between the convergence of the cache hit and
3600 seconds after caches fill. Since we simulate 5 topologies,
1 homogeneous plus 6x2 heterogeneous strategies for content
store sizing, for each popularity setting (i.e., value of the zipf
catalog «) we simulate nearly 1200 hours of CCN dynamics
(or, nearly 50 days worth of traffic).

While the topologies have been discussed in the previous
section, we consider as in [2] that the size of the CCN content
store is upper bounded due to nowadays memory access
speeds, that must be able to follow network link capacity. A
detailed analysis let authors in [2] to quantify to C'(:) = 10 GB
the size of individual caches achievable nowadays, that we also
consider in this work.

The YouTube catalog size is estimated by [5] to amount
to 108 video files, having geometrically distributed size with
10MB average [11], yielding to a 1PB catalog. Notice
thus that each cache can only store a very small portion
(10GB/1PB) of the whole catalog.

Concerning the catalog, an important parameter is the popu-
larity of individual items, which is usually assumed to be Zipf,
and also experimentally verified by [5] for the YouTube case.
Clearly, the value of the Zipf exponent « plays a paramout
role in determining the caching performance. Yet, there is
no consensus for setting « that varies in the CCN literature
between 1 [7] and 2.5 [3] (the latter taken from [5]). Notice
however that [5] reports a @ = 2.5 fitting for a part of the
slope the YouTube popularity: we point out that the o > 2
values in [5] only fit part of the tail, while the body appears to

follow a Mandelbrot-Zipf law. As we discuss in the following,
considering such a large value for a could oversimplify the
problem.

We studied the system performance under a large o range
in [8], [10], of which we summarize here the main message
concerning the impact of «. Let us recall that the Zipf
probability distribution is defined as P(X = i) = % with
C= Z‘jill 1/7% where i is the rank of the i-th most popular
file in a catalog of size |F| files. Thus, Zle P(X = 1)
corresponds to the percentage of requests directed to the set of
k most popular objects. Now, we observe that for large values
of a, the caching problem becomes trivial: e.g., at a = 2, out
of the 102 files catalog, only 120MB of cache are required
to cache the & = 12 files responsible for at least 95% of
the user requests (as leil P(X =14) > 0.95 for o = 2).
A sharp transition phase of the value of k corresponding
to the 95% of requests happens between o = 1.25 and
a = 1.5 where the bulk of requests concerns respectively about
k = 50,000 files (or 500TB storage space) and k = 234 files
(about 2.4GB). Comparing these sizes to that of individual
caches E[C(i)] = 10GB, we expect these two « values to
correspond to large variation of the caching performance. We
argue that the « € [1.25, 1.5] boundaries are representative of
a wide spectrum of CCN performance (from [8], we expect
the absolute cache hit to vary between 50% and 80%), and we
consider both values in the following.

B. Simulation results

The aim of our wide-range simulation campaign is (i)
to assess whether heterogeneous cache sizing can provide
performance benefits over an homogeneous network and (ii) if
performance gain are consistent across all topologies for some
allocation metric X € {CC,GC,DC, EC,SC, BC}.

We express caching performance with two output metrics.
We consider cache hit probability H as the usual network-
centric metric. As user-centric metric we consider the path
stretch d/|P| as the number of CCN backbone hops d that the
data chunk has actually traveled in the network, normalized
over the path length |P| until the content originator (i.e.,
without caching). Note that d = 0 when users find the content
at the edge CCN router and d = |P| when the content is not
cached by any CCN router, so that d/|P| € [0,1].

First, we observe that quantization actually plays a ben-
eficial role. Let us consider the cache hit metric H and as
before denote by H § (H g) the cache hit metric achieved for a
given topology and popularity settings by using a proportional
(quantized) allocation according to centrality metric X. We
then define the relative error induced by quantization on
cache hit as (H)Cg — HE)/HE, which is depicted for all
topologies and metrics in a monotonously increasing fashion
in Fig. 4. In the picture, a negative value (gray shaded zone)
correspond to cases (i.e., metric and topology combinations)
where proportional allocation would yield better cache hit
results. Interestingly, Fig. 4 shows that though proportional
allocation yields better performance in some cases (left part),
however the performance difference with the corresponding
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quantized allocation is minimal (below 2%). Conversely, there
are cases in which quantization can bring almost up to 20%
gain with respect to a proportional allocation. Essentially, this
is due to the fact that some metrics (especially, BC and SC,
recall Fig. 1) may allocate a very low amount of cache space
to some nodes, which is “corrected” by having a minimum
amount of cache in the quantization process. In the following,
we thus consider only quantized allocations: this choice is
both robust (as we avoid outliers due to skew in the centrality
metrics) and realistic (as a perfectly proportional allocation is
not directly applicable).

To represent at a glance the impact of network topology
and allocation criterion on the system performance, we depict
in Fig. 5 a scatter plot of the cache hit versus path stretch
for different criterion and topologies (reporting only o = 1.5
for the sake of brevity). Each box is centered around the the
average cache hit and stretch performance, while box width
and height represent their standard deviations respectively. For
the sake of illustration, each topology is represented using
different points and box colors, while centrality metrics are
explicitly labeled in the figure.

Notice that for Level3 and DTelekom, the cache hit is only
modestly affected by centrality metrics. Notice that happens
despite a significant unbalance in the network topology, with
the vaste majority of the cache resources possibly allocated to
few nodes only (as per Fig. 3). For instance, for Level3 all
boxes roughly spans along the same x-axis support, meaning
that heterogeneous allocation can hardly make any difference
on the cache hit performance. Conversely, a slightly more
pronounced separation is visible along the y-axis, entailing that
the number of hops traveled before a cache is hit can instead be
affected by the ranking function. Similar considerations hold
for DTelekom, where performance gaps are only slightly more
noticeable.

Centrality metrics have a larger impact instead on the Tiger,
Abilene and Geant topologies, for both cache hit and path
stretch metrics: notice indeed that boxes now separate across
centrality metrics. Due to the cache hit and path stretch
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Fig. 5.  Scatter plot of cache hit versus path stretch for different ranking

(explicitly labeled) and topologies (represented with different points and box
colors) when o = 1.5. Each box is centered around the the average hit and
stretch performance, with box width and height extending to the standard
deviation of the above respective metrics.

semantic, the bottom-right part of the plot correspond to better
performance, so that allocation criteria resulting in bottom-
right boxes for all topologies should be preferred. Due to the
previously observed correlation in the size of the resulting
caches (Tab. II) it is not surprising to observe similarity across
allocations of different centrality metrics. Yet, there is no clear
winner that stands out from the plot — such as an optimal
strategy, furthermore yielding consistently superior results over
all® topologies.

We stress the Zipf popularity settings may further alter
the results for a given topology. We exemplify the situa-
tion by taking into account the relative error between the
cache hit gained by a quantized allocation strategy induced
by metric X over a constant homogeneous allocation, i.e.,
(Hgg — Heonst)/Heoonst according to our previous terminol-
ogy. The relative error is depicted in Fig. 6 for o = 1.5 (top)
and o = 1.25 (bottom) and for all topologies (points) and
centrality metrics (x-axis).

It can be seen that, e.g., eccentricity centrality EC may have
an opposite behavior depending on whether the popularity is
highly skewed or not: apparently, putting more cache capacity
to nodes that are somehow “confined” in faraway networks
region can be a reasonable choice only for highly skewed
content (v = 1.5) as it otherwise can yield to cache hit reduc-
tion. More generally, even for a single performance metric,
it is again hard to find a metric robust under all networks
and popularity settings — with the exception of degree-based
C’gc(i) allocation.

Notice indeed that, for both &« = 1.5 and o« = 1.25,
the DC metrics yield to cache hit improvements for all

3We prefer to ensure that gain hold over a larger number of topologies that
simply requiring a larger average gain, as the latter may hide performance
drops for some topologies.
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topologies except Abilene, where the performance loss keeps
however very limited (i.e., performance are very close to
the baseline constant allocation for Abilene). This can be
explained with the fact that, in the Abilene topology, the
degree does not significantly vary across nodes, so that a
degree-proportional allocation practically degenerate into an
(almost) homogeneous allocation. Conversely, in all other
cases (ch — Heonst)/Hoonst > 0 so that some gain can be
gathered from a heterogeneous allocation.

Overall, it seems that a simple quantize degree-based al-
location policy Cgc is the most robust across all topologies.
On the one hand, this is positive, since very simple operational
rules of thumb can be defined (e.g. “if you add a line card,
add a content store module as well”). On the other hand,
we also observe that a degree-based selection may tradeoff
with technological constraints, such as the ability to perform
memory lookups at line speed when both the memory size
and the node network capacity grows. As a result, further
architectural analysis beyond [2] may be needed to assess
whether the quantized degree-based allocation policy is also
feasible, and thus relevant.

Finally, from a higher level viewpoint, we notice that
performance gain is upper-bounded by a modest 2.5% in the
best case (Level3 topology, o = 1.25 in the bottom plot of
Fig. 6). In reason of such a limited gain over homogeneous
cache sizes, it seems as there may be no real incentive in using
heterogeneous cache allocation policies altogether.

IV. CONCLUSIONS

This work contrasts the performance of CCN under ho-
mogeneous vs heterogeneous cache sizes. Specifically, we
consider that a given amount of memory resources need to be
allocated across a network of arbitrarily connected CCN nodes.
We then define several allocation criteria resorting to standard
graph centrality metrics — such as betweenness, closeness,
stress, graph, eccentricity and degree centralities. Our criteria
are either simplistic (i.e., proportional to the centrality metrics)

or also incorporate a first degree of technological constraints
(i.e., memory quantization in multiple of a given amount).
To gather relevant results, we study large cache sizes up to
10 GB, realistic topologies up to 60 nodes, and a YouTube-like
Internet catalog consisting of 108 files for 1 PB of video data.
A thorough simulation campaign allow us to conclude that
the simplest metric, namely degree centrality (i.e., allocating
memory proportionally to the number of links), proves to be
a robust allocation criterion, yielding (modest) cache hit gain
under a large number of topologies and popularity settings.
At the same time, we also observe that in reason of
the modest gain, there may be no real incentive in using
heterogeneous cache allocation policies altogether.
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