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SUMMARY

The use of packet sampling for traffic measurement has becoaralatory for network operators to
cope with the huge amount of data transmitted in nowadaywarnks, powered by increasingly faster
transmission technologies. Therefore, many networkisgstanust already deal with such reduced data,
more available but less rich in information. In this work wesess the impact of packet sampling on
various network monitoring activities, with a particularctis on traffic characterization and classification.
We process an extremely heterogeneous dataset composedrgidcket level traces (representative of
different access technologies and operational envirotshevith a traffic monitor able to apply different
sampling policies and rates to the traffic and extract séfemtures both in aggregated and per-flow fashion,
providing empirical evidences of the impact of packet samgpbn both traffic measurement and traffic
classification. First, we analyze feature distortion, difi@a by means of two statistical metrics: most
features appear already deteriorated under low samphpgisb matter the sampling policy, while only a few
remain consistent under harsh sampling conditions, whial even cause some artifacts undermining the
correctness of measurements. Second, we evaluate therpanite of traffic classification under sampling.
The information content of features, even though deteéokastill allows a good classification accuracy,
provided that the classifier is trained with data obtainethatsame sampling rate of the target data. The
accuracy is also due to a thoughtful choice of a smart sagplaticy which biases the sampling towards
packets carrying the most useful information.
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1. INTRODUCTION

Even if the success of the Internet as a global communication platform &hgrue to its
decentralized and open architecture, the advances in communicationrantutation technology
have played an equally important role, supporting new generations awidth-intensive
applications. As a side effect of this increasing transmission speed, mketperators must deal
with ever growing traffic and the consequent huge amount of measutgregtremely challenging
to collect, store and process. Therefgacket samplinhas become mandatory for effective passive
network measurements, especially in the core of the network, to reducenthentiof data to
a manageable size. Naturally such reduction comes at the cost of lesataatata and several
studies have focused on the impact of different sampling policies on traffasurement [1+-8] or
on the performance of various networking activities related to measuremstit,as monitoring,
SLA compliance, anomaly detection and traffic classificatioh [9—15].
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2 DAVIDE TAMMARO ET AL.

Among the various applications of traffic measurement, traffic classificatisndtently received
significant attention from the research community. Correctly identifying tipicgtion associated
to traffic flows is indeed crucial, in that this knowledge is necessary famaber of management
tasks (e.qg., differential treatment for quality of service, or service legeements enforcing to cite
only the most important). Inevitably, as sampled data is becoming in many settingdyHeénd of
data available, the question is whether classification is still possible with sdabe@ information.
Still, despite this growing interest in the operation community, the impact of paakatling and the
performance of traffic classification techniques are issues that haverdeely considered together
in the literature so far [14—20].

Given these premises, this paper provides two main contributions. First, asuneethe effect of
different sampling policies and rates on a large set of traffic propewtigisout being tied to any
particular application. Second, we focus on traffic classification uratepked data (hence, traffic
properties becomes “features”, in machine learning terms, upon whictifidagon decisions are
taken): in this context, we evaluate the extent of the degradation of thenafimn content conveyed
by the features, besides investigating the achievable classification @gcura

In order to gather general results, we employed an extremely hetemgedataset, composed
by four different traces, from both academic and commercial netwoeksesentative of different
access technologies, network setting, user population and years. pghsible we used publicly
available dataset to promote cross-comparison in the scientific community. &tdset was
processed by a popular flow-level analyzest at [21], which outputs not only detailed per-flow
features at network and transport layer, but also aggregated distngwf feature. For this work,
we enhanced the tool with the possibility of applying several sampling polic@aély,systematic
uniform stratifiedandbiased with arbitrary sampling rates.

We characterize the distortion introduced by sampling as the distance betveedistribution of
properties for sampled and unsampled traffic, by means of two commonlystagestical metrics,
namely theHellinger Distanceand theFleiss Chi-SquareTo summarize our main results, we find
that (i) most properties are already distorted for low sampling rates,dlegarof the sampling
policy applied (partially confuting earlier results about the robustnesanofam sampling, which,
however, limitedly considered only a small subset of properties) and cotllee hand, we found a
set of properties, pertaining to different layers, which are correstiynated in spite of sampling.
Also, (ii) we highlight some artifacts induced by heavy sampling, which seeimpoove the
estimation of some properties, that are due to a subtle interaction of binninggsgtsaand the
statistical metric used to compute the distortion score; besides, we obserngasged sampling
yields a greater distortion, which makes it less suited for the purpose fid tharacterization.

As for the impact of the sampling on traffic classification, we rather use a&diaampling
policy which tries to capture the most important pieces of information. For this tes first
asses the usefulness of features using a information theoretic metric, rthmlelfprmation Gain
and afterwards we evaluate the classification accuracy through C4.Eledy wnow supervised
classification algorithm. We study the impact of different sampling rates,riegtoups, datasets
and training policies. Our main findings are that (i) features, albeit distatedstill quite useful for
the classification (i.e., their information content is less altered); therefnesdvided that both the
training and validation phase are performed with data obtained applyingrtteessmpling rate, it
is still possible to have a good classification accuracy with sampled data.

The remainder of this work is organized as follows. First an overviewefehated work is found
in Sec[2. Then, Sekl 3 presents the data used for the experimentéitgiathe packet level traces
and, second, the features produced by our monitoring tool. We therilseite methodology used
to process this data in Sdd. 4: in particular the sampling policies, the statisticadsratd the
classification algorithm. Results are split in three sections: as for the impaatrgdling on traffic
measurement, Sdd. 5 deals with the distortion obtijgregate featureand Sed.6 with the distortion
of the per-flow featuresas for traffic classification, Sdd. 7 presents the impact of samplinigfic
classification We summarize and conclude our paper in §kc. 8.
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EXPLOITING PACKET SAMPLING MEASUREMENTS 3

2. RELATED WORK

Packet sampling is not a novel techniquel[22]. Yet, given its increasingriapce, it has recently
received a lot of attention from the research community. In the following vesview the most
important pieces of work on this topic, both on sampling itself and on its effactraffic
classification, in order to better highlight our contribution. Yet, this is famfizeing a complete
survey, for which we rather refer the readerital [22].

First of all, researchers have categorized packet sampling methodsein eldsses, starting
from [1], until they have finally converged to a common framework statided as an IETF
RFC [23]. Summarizing, a first distinction can be made according to the seleti®me, which
can bedeterministi¢ randomor content-basedSecond, we can differentiate sampling techniques
according to the selection trigger, based on the amourint or number ofpacketsbetween
two different sampling events. As far as the selection scheme is con¢cewsshrchers have
demonstrated that the statistic properties of random sampling, especially iatifsestrdeclination,
make this technique particularly robust to evasion and attadKs [3, 22(®¥the other hand,
recent studies showed that statistical multiplexing of traffic may have the déauea a random
selection|[8], especially when considering estimation of traffic volumeselisanuch more of an
agreement, instead, about the most effective selection trigger: [3leshtivat time-based triggers
are less robust than packets-based ones, because they suffeth&dursty nature of network
traffic. A few works have proposed more sophisticated sampling tectsguieh help in estimating
specific traffic features, for instance trajectory sampling for spatigletis [25] or sketches for
flow-size [6]. Other works have proposed to make the samplingaddptive[2,9,26] for instance
to the traffic load, to reduce the estimation error of some traffic metrics.

Besides investigating the properties of sampling itself and its impact on mostlg traffimes
measurements [4+8], researchers have also studied the possibletapdich sampled data for
various network administration tasks, such as network management [8],v8tification [10],
anomaly detection [11-13] and, lately on, traffic classification[[14—2@&7 It must be said that
in this kind of evaluation is not easy to distinguish between the actual impaetngblsng from
the intrinsic performance issues of the application itself. In this sense, shgdirt of this work,
which studies the effect of sampling on its own, considering different jgglicates as well as a
wide range of traffic features well beyond simple volume measurementsiicuparly helpful in
shedding light on this issue.

As already mentioned, to date there are not many papers jointly considewihgtiaffic
classification and sampling [14420], and, moreover, the majority among thintreats sampling
as a minor issue. For instance, [16] analyzes how sampling methodologgniodsi the selection
of both elephant and mice flows in thaining data set, aggravating the traditional class imbalance
problem; the same issue is mentioned as particular interesting, but only asexiattk in [17].
Other papers only try to predict what sampling might imply for the classifieysphapose: authors
of [19], whose technique is based on the size and direction of the vstrpéickets of a flow, sustain
that their classifier would badly suffer packet sampling, whereas beinmgst to flow-sampling;
on the opposite side, we argue in_[20] that accuracy of stochastic jpaskection should be not
influenced by sampling altogether (provided that enough packets ardeshtopget statistically
relevant signatures).

The impact of packet sampling is experimentally addressed in_[114,13n1&jore details, [18]
investigates the sampling effect on Reduced Error Pruning Tree (REPdIassifiers, and limitedly
reports a single case study fpr= 1/3 (asserting that classification accuracy lowers of 10-20%,
depending on the client-to-server or server-to-client traffic directimsfead [[14] investigates the
sampling effect on a lightweight traffic classification approach (usingydN8ayes on NetFlow
records, and varying the sampling rate) finding that packet samplingradadesorsen the results
(rather, accuracy may increase under heavy sampling) and suggésgintay be due to an artifact
of packet sampling (though a more detailed analysis is missing). Finally, thevonkythat shares
its main focus with ours is [15], which studies the accuracy of statistical draféissification
based on NetFlow sampled data. From extensive experiments and a feobabjistic analysis,

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Network Mgm(0000)
Prepared usingnemauth.cls DOI: 10.1002/nem



4 DAVIDE TAMMARO ET AL.

Table I. Summary of dataset used in this work.

Trace Auckland ISP Campus UniBS
Year 2001 2006 2008 2009
Packets 291M 44M  17M 26M
Flows 11M 219K 422K 34K
Packets/flow| 26.2 202 40.8 764
IPs 410K 61K 81K 6.59K
Available at | [30] - - [31]
Ground truth| Port-based - DPI[32] gt [33]

authors of[[15] draw a conclusion similar to ours, showing that the usampked data both in the
training and testing phase greatly improves the otherwise degraded@cobtained with sampled
NetFlow. Nevertheless they only consider the limited set of features avaiteblendard NetFlow
v5. Finally, both [14, 15] consider only systematic sampling, while in our weeldefine a biased
sampling policy which solves the issue of the number of flows sampled. Addifione support
our experiments with an analysis of the information content of traffic fegtsteowing that some
of them still retain their discriminative power, notwithstanding the sampling dedjcn.

Building on [29], we extend our previous work by considering a largeaset, which ensures the
statistical relevance of our work, and a larger number of sampling poleidening the boundary of
our investigation. Moreover this work also considers the performantafit classification based
on sampled data, which was not addressed by our previous work: theimmatant additions
are the analysis of the per-flow feature distortion, the ranking of feataceording to the their
information content and the assessment of classification accuracy.

3. DATASET AND FEATURES

Given the experimental nature of this work, it is extremely important to givenasy details as

possible on the data employed. In this section we first describe the detaitspd¢hket-level traces.
Second, we present the tool used to analyze such traffic [21], whigliea sampling to the traces
and extracts, as well, a wealth of features able to characterize sevepairiies of the traffic at

different layers of the networking stack.

3.1. Dataset

In order to gather results that are representative of a wide rangéadmkesnvironments and epochs,
we use several traces, whose main characteristics are summarizedlinatore details:

e Campusis a 2-hours long trace captured during 2008 from our network, septative of
a typical data connection to the Internet. LAN users can be administradimff members
and students. Most of the traffic is due to TCP data flows carrying Weh| angbbulk traffic,
since a firewall blocks all P2P file sharing applications.

e ISP is a 1-hour long trace collected during 2006 from one of the major Europgl,
which we cannot cite due to NDA, offering triple-play services (Voice edI'V, Data) over
broadband access. ISP is representative of a very heterogeswmasio, in which no traffic
restriction are applied to customers.

e Auckland is a public available tracé [30], collected during 4.5 days in 2001 at theelthity
of Auckland, of which we extract the initial 8hr busy-day period only.

e UniBSis a set of 3 traces captured during 3 working-days in 2009 by collseagugniversity
of Brescia on the 100Mb/s link connecting their campus network to the Intdrhis dataset,
of which we only use the largest trace, is publicly available in anonymizexd [81].
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EXPLOITING PACKET SAMPLING MEASUREMENTS 5

Table II. Subset of the dataset used for classification, aptication breakdown.

UniBS Campus Auckland
Flow Byte | Flow Byte | Flow Byte

Protocol % % % % % %
HTTP 49.3 56| 41.8 62.7| 34.8 253
HTTPS 15 1.2 | 41.8 30.6| 348 234

FTP - - 48 0.03| - -
IMAPS 3.7 01| 0.2 39| 06 0.9
POP3 1 0.01 - - 5.6 2.8
SMTP - - - - 23.9 475

Skype 1 0.7 | 111 26 - -

eDonkey | 40.1 87.2| - - - -

BitTorrent | 3.3 5.0 - - - -

As it can be seen, extremely heterogeneous network scenarios aréntakaccount in this study:
we consider both commercial and academic environments, as well as mliffeaess technologies
and security settings. Moreover traces are collected in a time which spahgadecade, the oldest
dating 2001 whereas the newest being from 2009. Such a diversetstdundamental to gather
statistically meaningful results. Diversity is even more important for our ifleaton purposes. Itis
known, in fact, that the accuracy of a classification algorithm is heavily itepduny several factors
like different traffic mixes, different network setups, different timedhef day and so on. For this
reason, all these aspects must be taken into account and possibly thiutie dataset, so as to
gather a reliable evaluation of the classifier performance. Furthermammliag makes this issue
more critical, as it possibly discards most of the traffic volume when aggeasges are applied.

Finally, when testing classification accuracy, finding public traces with feligbound-truth
associated represents a major problem. Were such kind of traces avatiaylevould represent
a common ground for researchers to compare the performance of thaittadgs and reproduce
the results of previous work. Unfortunately, it is well known that this is awoteasy problem to
solve, for it touches privacy (e.g. private data might be found in gazkgoads, hence the need for
anonymization) and business interests (e.g. operators are usuallyeltariant to share data about
their networks). A first step in this direction was taken by our colleaguiseainiversity of Brescia,
whose dataset, extensively used in our work, is public and has a Viafyleeground-truth associated
thanks to theigt tool [33]. For the remaining datasets, instead, we need to build our ovamgto
truth: for Campus we used the DPI classifier described in [32]; for umkwe employed a simple
port-based classification scheme, which was very reliable in 2001, vdpications still abide by
the standards IANA well-known port allocation; we neglect the ISP tratkdrclassification part,
to avoid using traffic with uncertain application labels.

Tab[Tl summarizes the composition of the traces according to our pre-lgb&Brexpected most
of the traffic is carried over HTTP, which together with IMAPS, is the onlgtpcol common to all
traces. The mix of protocols also reflects the date of the traces: in Auclaridund exclusively
traditional client-server applications, whereas more recent traces éalsd P2P applications, both
file-sharing (eDonkey and BitTorrent) and VoIP (Skype).

3.2. Features

In our experiments, packet-level traces were processed wittat [21], which logs several traffic
features as output of its analysis. We actually enhanced the tool, addipggsibility of preliminary
sampling the input traffic (with configurable policies and rates, as it will h@aéixed later on),
before experimentally evaluating the features.

More preciselyt st at outputs two different kinds of metrics: some g@er-flow measurements
i.e. the tools gives the value assumed by the feature for each obsemwedthers areaggregated
measurementsn the form of distribution of the values assumed by the metrics over all eider
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6 DAVIDE TAMMARO ET AL.

Table 1ll. Summary ofaggregated featureslivided by protocol. We report the number of distinct featu
and, in boldface, the number when considering differeffi¢reirection (i.e., incoming, outgoing, local).

Type Protocol | Example of features .N“”.‘ber of Fefatur.es
Adirectional Directional
IP Packet Length of a IP packet 5 15
Single Packet UDP Destination Port of a UDP connection6 14
TCP Destination Port of a TCP connection11 21
TCP Maximum RTT of a TCP connection| 16 20
Multiple Packets| RTCP Average bitrate of a RTCP connectionl1 39
RTP Stream bitrate of a RTP connection | 21 63
Total | 70 172

Table IV. Summary of TCRer-flow featuresdivided by category. Number of features in boldface again
includes multiple directions (i.e., client-to-servemas-to-client).

Category Example of Features .Nun)b er of Fe_:atur_es
Adirectional Directional
Flow ID IP addresses of the flow 2 4
Flag counts Number of ACKs sent for the flow duration 5 10
Volumes Number of bytes sent for the flow duration 9 18
Packet size Max segment size of the flow of the flow 3 6
Window size Maximum congestion window size of the flow 9 18
Timings Mean RTT of the flow 7 14
Congestion contro|l RTX timeout of the flow 8 16
Flow duration Completion time of the flow 5 5
Total 48 91

flows. Notice that these are just two different points of view of the same umneaents (in fact
most features are available in either flavor), but they are naturally swtechdically different

types of analysis. In this work, we take advantage of either viewpointsaels of them is best
instrumental for one of the two objectives of this work: namely aggregatexsunements better
reflect monitoring applications, while per-flow measurement are more suiteétld classification
task.

As it would be cumbersome to report here the full feature list, we refercthaer tol[211] for the
complete list, and provide here only a few relevant examples for the satlardf. Tab.[1ll is a
condensed view of thaggregated features sdisting the number of features related to different
network protocols. As most features are evaluated on different tidifiections we report both
the number of distinct adirectional features and the number when congideaffic directions
with respect to the measurement point (i.e., incoming to the measurement pagaingufrom
the measurement point, local but switched at the measurement point). Bbcaricernper-flow
features we basically concentrate on TCP properties, as they are the most intgrastis for the
classification in reason of the protocol breakdown shown early in[Tabab.[1V lists flow-level
features divided by type of property that are related to, e.qg., trafficwedy congestion control,
timings or TCP flags. Again, the table contains both the number of distinct &diratfeatures and
the number considering traffic directions with respect to the flow initiator (lienteto-server and
server-to-client).

We underline that the features we consider are substantially in agreeritbrthesfeature set
listed in [34], which contains an exhaustive set of features for traffiesification. This agreement
follows from the fact that st at started as evolution of Shawn Osterméaript r ace [35], which
is also used by authors in [34]. At the same time, the match is not perfect, g84]gnisses some
features of st at (e.g. flag stating whether a TCP flow has been interrupted [36], detailedears
about anomalous TCP behavior[37], etc.) aisd at does not implement all features listed(in[34]
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EXPLOITING PACKET SAMPLING MEASUREMENTS 7

(such as the Fast Fourier Transform of the packet inter-arrival timé¢he count of valid RTT
samples, etc.).

4. METHODOLOGY

We now describe the methodology followed in the experimental study. Firsigted the different
sampling policiesve apply to packet level traces (Séc.]4.1). Second, we preserstdtistical
metrics which measure the distortion induced by sampling on feature distributions [{S8c
Finally, we describe the classification algorithm we employed to test the effezampling on
traffic classification (Se€.4.3).

4.1. Sampling Policies

We implemented in the st at tool different sampling policies as defined [n [23], and that we
overview in the following, explaining their peculiarities with the help of Fig. 1e Picture shows
how different sampling policies with the same sampling étep4 operate on the same sequence of
packets; in the picture, packets are represented with different levglapfassociated to different
flows, where an “S” denotes a SYN packet.

e Systematic sampling packets are sampled in a deterministic fashion, with 1-out{mdckets
selected. In the example it can be seen that for each 4-packets windofirsthpacket is
always selected.

¢ Random sampling packets are sampled at random, in particular each packet is sampled
independently at a raje= 1/k. As displayed in the example, since the process is completely
random, packets might be sampled in sequence, or there may be sevesatutive
unsampled packets (obviously with a geometrical decreasing probability).

o Stratified sampling: k£ consecutive packets are grouped in a window, in which a single packet
is randomly sampled. Looking at the picture, for each 4-packets windegvaod only one
packet is always selected, but, unlike systematic sampling, instead of sglabtiays the
first, the algorithm randomly chooses which packet to sample out of the four

e Systematic SYN sampling is the superposition of two independent processes: (i) a
systematic sampling process, which selects evetty packet; (ii) a process which selects
all TCP packets with the SYN flag active. This is particular evident in the illtisivawhere
you can see that this policy selects all the SYN packets, in addition to all thefgabat a
normal systematic sampling would pick.

The first three sampling strategies belong to the familymbiasedalgorithms, which are the
simplest one, being completely unaware of any traffic property. Since #igsrithms are extremely
lightweight, they are commonly implemented in network equipment, reason whyavpagicularly
interested in their performance. The last one, instead, is what is usuliddg essmartsampling
algorithm, because some intelligence is introduced to sample the “right” packetthe ones
conveying the most precious pieces of information. There is no intrinsic limitécathount of
intelligence that one can put in such a sampling method and several smadgthalg have
been proposed by researchers; still, it should be remembered thatrfes@wof sampling is to
reduce computational consumption, thus we want to keep the policy as simplessible. We
argue that Systematic SYN sampling represents a good compromise betwservibeaspects,
particularly for traffic classification. On the one hand, as showri in [BBhproves the estimation
of aggregated traffic counters (e.g. total flow length) which are knovire tparticularly important
for traffic classification. Moreover, it ensures that at least onegidok each flows is sampled, or,
in other words, that all flows are seen: this solves the problem of resyltegentativeness faced
in [14,[15] for traffic classification. On the other hand, computational derily is very low, since
the algorithms needs just a counter and a simple check on packet haatleer(hore at a fixed
offset) to choose whether to sample a packet.
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Figure 1. lllustration of sampling policies.

4.2. Metrics

In order to quantify the distortion introduced by any sampling policy into the nseteatures by
t st at , we consider different statistical indexes, suited for either aggregateer-flow features.

4.2.1. Aggregated features

Denote byP an unsampled feature, which is described by the probability density funetion
measured over the traffic aggregate. Denot&lihe same feature as measured under a sampling
process, which is then described by the probability density fungtiehmeasured over the sampled
traffic. To express the distance betwegn) andq(x) we consider the following standard metrics:

¢ Fleiss Chi-Square ¢)

6(p.q) = \/ e xla(@) = p(@)/p() .

> rexla(@) +p(@)]
¢ Hellinger Distance (HD)

HD(p,q) = [1—= Y /p()q(x) )

zeX

To provide backward compatibility with_[3], we consider themetric, which is a normalized
version of the standard Chi-Square metric: increasing values cobrrespond to increasing
distortion. As the Chi-Square statistic is sensitive to the size of the data set, tkés ihdifficult
to compare samples of varying sizes: thus, it cannot quantify significami$rwhen varying the
sampling fraction. Fleiss’ definition of directly derives from Chi-Square but overcomes this
limitation, being independent from the sample sizZe [3].

The Hellinger Distance (HD) is typically used as a score of similarity betweenasdtD values
are confined in the range, 1], with lower values corresponding to higher similarity between the
distribution under comparison.

An extended set of results is available in|[39], which also consider othéficsiesuch as
Kullback-Leibler, used e.g., in_[40] to reduce the data set size in an agprcomplementary to
sampling.
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Figure 2. Example of distortion of aggregate features (Gagataset): CDF of IP packet size (a) and
number of packets per destination TCP port (b). Plots rephatCDF gathered from the unsampled vs
sampled traffic aggregate (systematic sampling, 128), along with the statistical indexes of distortion.

To have a first idea of the scale of the distortion scores defined so faravale a preliminary
example of some relevant features. Higj. 2-(a) and Big. 2-(b) reperCF of two features,
respectively counting the IP packet size in bytes and the number of tgadikected to a given
TCP port. CDFs for the Campus trace are reported for both originahypied traffic, as well as for
systematic sampled traffic with= 128. Values of distortion metrics are also reported in the picture:
for illustration purposes, we select two example aggregated features ¢tdifferently impacted by
sampling, so to better compare tHe> and¢ distortion score. The CDF of IP packet size ([Eig. 2-(a))
shows a degradation score of about one order of magnitude smallestfometricsH D = 0.024
and¢ = 0.051: in this case, no remarkable difference appears from the plot. Catydise packet-
wise destination port (Fid.] 2-(b)) shows a moderate distortion, with a sporeding degradation
of HD = 0.219 and¢ = 0.498: in this case, differences in the CDF, although of small dimension,
can be seen with naked-eyes from the plot. In this latter case, some digiasaecessary. The
x-axis represents the TCP port range, so low values obrrespond to packets destined to the
well-known port range (i.es < 1024). Conversely, values of > 5000 correspond to the default
Windows ephemeral port range, and> 32768 to the Linux randé Intuitively, as a multitude of
clients requests (which use a large range of ephemeral ports) areediteavell-known ports, the
difference due to sampling is limited (i.e., since many samples are available ov@n#ilerange
of well-known ports). Server responses coming from well-known pamsinstead destined to a
large range of ephemeral ports, so that sampling can induce a largetidis{ae., as the packet
population is more dispersed). Additionally, while requests destined to well+korts have rather
standard lengths (e.g., HTTP GET or FTP RETR commands), the length oétpbenses may
instead widely vary (e.g., due to the varying filesize), causing additiorfatélifces. Finally, values
of > 49152 correspond to the alternate ephemeral port range, and are appaedatilely less
used (i.e., they account less than 10% of the packets).

4.2.2. Per-flow features
Quantifying the distortion in the case of per-flow features is not only uidefumonitoring

purposes, but also for the classification process. In this case, weacetg exact values measured
by our monitoring tool for the same flow with and without sampling. We used twssidal metrics
to measure the distortion: (i) the mean percentage & and (ii) the correlation coefficient
p between the sampled and unsampled values. The mean percentage erras tedl@ much
the sampled values diverge from the unsampled ones: the smaller the distbeidetter; the
correlation, instead, tells us whether a linear dependence exists betwasrstmpled and sampled

TEphemeral port ranges availabléatt p: / / www. nct t p. comi ncf t pd/ doc/ mi sc/ epheneral ports. htni
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Figure 3. Example of distortion of per-flow features (Camgataset): scatter plot of TCP source port (a)
and average packet size (b) for unsampled vs sampled trdffing with statistical indexes of correlation.

values. Like the previous two statistical metrics, the scatter plots of Fig. 3 showexamples of
features and the corresponding value of the distortion scores. Thept@hs again the average
packet size per flows, the same feature whose distribution has been shéig.[2-(a), whereas
the left plot shows the source TCP port. Theoordinate is the value of the feature for unsampled
traffic, while they coordinate is the same feature when a systematic samplingiwitti 28 is
applied. As in the previous case, we contrast in Eig. 2 two example featmesof which is not
affected by sampling, to better compare the values oEtin® andp distortion scores.

Two opposite behaviors stand out from the pictures. The feature d&playthe left plot is
correctly estimated simply by inspecting a single packet header: for thisr@aserror is observed
and the correlation is maximized. As we will see later on, this kind of featurepwaile the most
valuable discriminators for traffic classification under sampling. On the agnthe feature in the
right plot, being an average, depends on the observation of sewslats: therefore, we observe
a substantial distortion introduced by sampling, testified both by the large shhadative error,
and the lower correlation coefficient as well. In fact, despite many pointsaigh on they = z
bisector line, we can notice a large number of flows falling on a few distin@z¢watal lines (namely
y = 40,576, 1500). We found that only a single packet was sampled from these flows, whiat
representative of the average packet size. In fact, with a singlealiger, it is likely to get a
typical-sized packet (e.g, 40—byte packet without data, dr500—byte full payload packet, or a
576—byte packet) which will lead to a bad estimation of the actual average pazkeifdhe flow.

Actually, in the second part of this work, we will be interested more in how Samaffects
the relevance of features for the classification, rather than in their meoegtidis. Therefore, we
need a metric able to capture how much information regarding the applicatidrid@bbaveyed by
any given features. For this purpose we resort tdrifermation gainf41] metric from information
theory. Information gaid (X, Y) measures the reduction of the uncertainty of the clagm our
case the application label) when you know the value of feakliran other words, it evaluates how
much the knowledge aX tells you about the value &f. Information gain is based on the concept
of entropyH (Y') of a random variabl&’, i.e., the incertitude of the random variable, which, in case
of a discrete random value with a distributipfy), is given by

== p(y)log, p(y

yeyY

The uncertainty of”, when the value o is known, is given by the conditional entropy
HY|X)=-Y pl)HY|X =)
reX
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Finally the information gain is the difference of the above quantities
I(X,)Y)=H(Y)-H(Y|X)

The information gain, like entropy itself, is measured in bits of information ahlnjethe featurex.
This metric is commonly used for feature selection and in particular we will se@ ingkt session
that it is also used by our classification algorithm during the training phase.

4.3. Classification Algorithm

Since sampled traffic has rarely been used for traffic classificationtill isreclear which algorithm
might be the most apt to deal with such data. Motivated by work such_asA2¢h compares
different supervised machine learning techniques, and consistently[l8ihdur choice falls on
Classification Trees (C4.5and more precisely on the open source J48 implementation of the
weka classification suite[ [43]. Indeed, as [42] points out, C4.5 offers thé¢ desuracy for a
moderate training complexity, with a furthermore very lightweight classificatimegss. Notice
however that[42] does not consider Support Vector Machines (5YHdt are well known for their
discriminative power, in their evaluation. We point out that while we actualbcasssfully used
SVM for the purpose of traffic classification [20,44], for this work wexiled to focus on C4.5 —
essentially due to the lower complexity of the latter, allowing an extended sgpefiments. Notice
that any supervised machine learning tool (e.g., SVM, C4.5, etc.) usepwsavectorof features
and yields a class-label as output of the classification task. Hence, theduoktly remains valid
to a larger extent of classification techniques (though the performancelmage).

As machine learning is out of the scope of this work, we refer the interesseter to[[4R2] for
detailed description of different techniques, their merits and performakicéne same time, we
need to briefly introduce C4.5, and the notion of information gain, as it will Beumental to our
experimental analysis later on. C4.5 operates on the basis of a decisibnittbeforehand from the
training points. A new point is classified by traversing the tree from thetootbte leaves, choosing
the path at each intermediate node (a.k.a. split node) according to the vals@scific features:
finally a classification outcome univocally corresponds to each leaf. THssification process is
extremely lightweight, requiring at most a number of comparisons equal to tkenoma depth
of the tree. The tree building algorithm is lightweight as well, and it is based einformation
gain metric previously introduced. The algorithm basically picks as splittinmfedor each node
the one which maximizes the information gain: this strategy of using the most hatpfhutes at
each step is particular efficient, yielding rapidly converging classificatewsst(i.e., whose depth is
limited, requiring thus few comparison per classification operation).

5. AGGREGATE FEATURE DISTORTION

As for the impact of sampling on traffic measurement, in this section we coatemtn the pure
distortion introduced by sampling observing the impact it has on aggregéfie tretrics. We
first characterize the overall feature set and the range of valuedstgr our statistical indexes,
in order to have a general picture (SeEc]5.1). We then focus on smatéeofsteatures defined
by the protocol layer they pertain to (e.g. network or transport layeghtitying which family of
attributes is more heavily affected by sampling ($ecl 5.2). We finally inditedaaset of robust
features, whose distortion keeps bounded even under heavy sangpiindpich we investigate the
impact of different sampling policies (Séc.b.3).

5.1. Overview of Sampling Impact

In this first part we look at the complete set of features at once, in dodebserve the general
trend of feature degradation under sampling and to better understarahtie of variation of the
statistical metrics. For this purpose we use the distributions of the two distod@assover the
whole set of features reported in Fig. 4 and represented in the forimngblementary cumulative
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Figure 4. Distribution of the Hellinger distance apdoefficient over the whole features set for systematic
sampling and € {2,128}.

distribution function (CCDF). The graphs report the distributions fortesygtic sampling with

k =2 andk = 128, respectively in the left and right column, while the top row is related to the
HD score and the bottom one to theoefficient. We keep a separate curve for each dataset as they
represent different network conditions and traffic mixture, thus wéepte observe their behavior
individually.

At first glance, the two statistical metrics are quite coherent with each sth@ring practically
the same trends, even though HD is bounded in the intédva] whereasp is not. Moreover, it
looks as Campus and ISP appear more robust than the other traceguessfdegrade more gently:
the heterogeneous traffic mixture found in this traces is likely the key reakgrthey are less
affected by sampling.

On the contrary, it is quite striking that for the other traces around 60%atfifes are completely
distorted (i.e., the distance metric is maximized) already with 2: this means that they are
impossible to evaluate even with very light sampling. On the other hand, 10&&anfrés show no
distortion at all, scoring a zero for both metrics, meaning that they aregplgréstimated regardless
of the sampling rate. As a matter of fact, all these features are not distsrtedyacan be correctly
measured simply by inspecting one single packet of any given flow.

To dig further, we look at the same data in a different way by means of #tes@lots of
Fig.[8, where each feature is represented with a point whasedy coordinates are respectively
the distortion score fok = 2 andk = 128. We have zoomed to show the area close to the origin,
where we see a cluster of points showing no degradation.

However, the pictures show an interestigifact: notice that the estimation of a few features
apparentlyseems to improve under heavy sampling, as shown by the points falling in the gra
shaded part of the graphs (some of which are labeled with the featurg.nBEmeweird effect is
mostly due the different way sampling impacts on long and short flows, simgedoes have a
larger probabilities of being sampled while the short ones are likely to disapfter sampling. For
instance, this effect is particularly evident for thep _cl _b | c¢2s feature, i.e. the distribution
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Figure 5. Scatter plot of Hellinger distance apctoefficient over the whole features set for systematic
sampling withk € {2, 128}.

of the TCP flow length, measured with a coarse granularity (i.e., large lhinglis case, for larger
sampling steps, many short flows are no longer sampled, with a corrésgahecrease of the
mass of flows falling into the smallest bins. Thus the improvement of the feastireagion is a
joint consequence of the traffic nature (sampling tends to select pac@sigtie same elephant
flows, yielding a better estimation of the length of such flows) and the spedifiiny adopted

(as this behavior is not shown by the corresponding feature calculatédfimer granularity
tcp_cl _b_s_c2s, since in this case it is less likely for the sampled feature to fall into the same
bin of the unsampled traffic). The community should be aware of these sstifat, if neglected,
could undermine the results of an experimental investigation.

Notice that this effect is instead less evident in EhB score plot, where only a single feature falls
in the gray region, than in theplot where we actually find more points in this area. Moreover for the
¢ coefficient many features actually fall closer to the bisector as well, whigngihat only a slight
degradation is detected in spite of an increased sampling rate. In factns seethough different
choices of binning have a greater impact ondhaetric, sometimes compromising its accuracy. On
the other hand, th& D distance appears able to better characterize the distortion, becauséea gre
score usually corresponds to a larger sampling step. This is due to thewliffieeighting of the
errors ing and H D: in the former, larger discrepancies will be amplified (i.e., squared diftere
with respect to the latter score (i.e., product): this entails that several amual,eaffecting several
bins, may produce a larger distortion scoreirThe main outcome of this behavior is that special
care must be also taken in the selection of the distortion metric used, as otheimikar artifacts
may yield to misleading conclusions.

5.2. Impact of Protocol Layer

We now group the features in different subsets according to the pidayar: in particular we
consider IP features, UDP single-segment features, TCP single- dtigleassegment features as
in TabIl. By comparing the effect of sampling on these groups, we teefind out whether there
exists a family of features which is by definition more robust to sampling.

In the light of what observed in the previous section, without loss of gdityenor of information,
we express the distortion scores using the Hellinger Distance alone. Ronéhgeing, we still focus
on a single sampling policy (namely, systematic sampling), delaying the cortgdevédifferent
sampling policies to the following section. However, we do take into accountge k@ange of
sampling rates, from 1/2 to 1/1024. Results are reported in the four go&ptg.[8, corresponding
to the different datasets. In every single plot, each curve depicts the anelaihe variance of the
HD metric over a given group of features as a function of the samplingkstep

A general observation which holds for all of the datasets, is that sonterésaprove to be
intrinsically easier to measure under sampling. For instance the curvesartidis scores for both
IP and UDP single-segment features are considerably closer to the miniatuerfer the HD across
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Figure 6. Mean and variance of the HD distortion score, fatufees grouped by protocol layer, as a function
of the sampling step under uniform sampling policy. Theaxiely low distortion of “TCP single” features
in the Auckland trace is an artifact due to the lack of packsigad, in particular of TCP options.

all dataset (apart from Auckland, as we will explain later). This confoorsprevious intuition that
features relying only on the inspection of a single packet (e.g., IP patiatare more robust to
sampling than features depending on the observation of multiple packet&R{ETgime).

On the contrary, while ISP and Campus exhibit rather consistent anderdheends, Auckland
and UniBS have some anomalies. For instance, in the Auckland trace, the-s&ggnent TCP
features have an unusually low distortion score. Investigating this isstheefuwe found that in
this dataset TCP options (e.g. MSS negotiation, window scale) are ot#dsfoa privacy reasons
(actually set to 0) together with the rest of packet payload, which ntakeat unable of correctly
estimating the related features (i.e., more precisedy,at assumes a maximum value for MSS, and
by default considers timestamp, window scale and sack options as untiket)fore, in this case
the low distortion score is an artifact, arising from the impossibility of correctineating most of
the features of that group from the trace under investigation, even imsd@mpled case. Instead,
the higher degradation detected for TCP features in the UniBS tracesd&dm the artificial nature
of this trace, built with a few hosts automatically generating specific traffica Assult, the trace
includes many elephant flows (notice the large mean flow size in[fab. 1) &ed wampling is
applied this strongly biases the distributions, yielding larger distortions.

Campus and ISP instead, show a similar behavior when considering T@GRefeas well.
Interestingly, notice that, at lower sampling rates, TCP features depeoimylti-segment suffer
a smaller distortion than features depending on single-segment obser/Alionthe HD value
for TCP multi-segment features keeps increasing with the sampling, whEGfasingle-segment
features, albeit already distorted for low levels of sampling, do not fudégrade for high sampling
factors. This unexpected behavior is due to the fact that, in the TCPstame of the single-segment
features requirspecific segments be monitored: for instance, the segment corresponding to the
negotiation of a specific option. If this segment is missed because of samplirdy is often the
case already at low sampling rates, the features estimation is compromisedrsgdyy some of the
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features requiring multiple segments (e.g., average and maximum value af¢hesravindow, etc.)
can be safely estimated for low sampling steps, as all segments anywaysefulinformation that
can improve the feature estimate.

5.3. Impact of Sampling Policy

In this section, we assess the impact of different sampling policies on thesagoof traffic feature
estimation. However, first we need to define the subset of features touser analysis: this
is not an easy choice given the large number of features already disfortesmall sampling
steps on the one hand, and the extremely varied behavior of differztotrdegroups across each
trace. Therefore, we adopt a simple but effective threshold-basedti®n criterion: we consider
as robust, and focus on in this section, all features whbgedistance is lower than a predefined
threshold. Hence, we no longer take into account the grouping by pidieyer when applying
the robustness criterion: rather, features are evaluated individualtias the robust set actually
consists of properties belonging to different groups. As we also ceneith direction separately
(i.e., incoming versus outgoing versus local traffic), it may happen ttesttarfe is robust for a given
direction, but not for the opposite one. Moreover, we conservatiegjyire features to bpintly
robust across all datasets under consideration: in other words sthlérrg set is théntersectionof
the sets of robust features on each single datasets.

Without loss of generality, results in this section refer to features which &a¥f D < 0.3 with
a sampling oft = 128. Notice that we select this values of threshold in reason of the knee of the
distribution observed in Figl 4. Notice also that different threshold vaastheH D < 0.1 we used
in [29], yield to similar considerations: yet, as in this work we consider a tadgtaset, and we
require features to be robust in all datasets, we prefer to apply a leggestrthreshold, so to assess
the impact of sampling policy on a larger number of features.

The final set contains 36 features, equally distributed over the 3 pitetid;d CP and UDP. Thus,
each protocol layer is represented in the robust set, except for t6® RRd RTP layers. In fact,
the relatively low amount of RTP/RTCP traffic present in the Auckland eataskes it difficult to
evaluate the related features for this trace, especially when hard sampiidifians further limit
the number of valid samples.

Results of this analysis for the robust features set are reported [d, Emmposed of one graph for
each sampling policy. We employ an exponentially increasing sampling:stepf,i € [1...10] C
N, reported on the x-axis of every plot. Each graph contains four summee for each dataset,
depicting the average distance score over the robust features satceaof the distance score is
also reported by means of vertical error bars (notice that we employneariastead of standard
deviation, as the latter is visually noisy, as the square root of HD valuéslihc R explodes).

At first glance, we can observe that there is no clear advantage indieedf random sampling
or systematic sampling: considering the corresponding three plots, omgaiteer a striking similar
behavior. This finding holds whenever several features are coadidand contrasts with earlier
results supporting stratified sampling techniques [3]. Our intuition is thatngikie level of
statistical multiplexing of traffic flows, the sampling policy has a minor impact, ésihyeevhen
complex traffic properties are considered. Also, notice that similar caoakifiave been recently
reported by independent research [8], which however limitedly corssidely traffic volume
measurements under sampling (i.e., flow length).

Conversely, our smart sampling policy has a noticeable impact on meastseatsuracy,
yielding completely different trends in addition to high distortion scores foh lsigmpling steps.
Intuitively, Systematic SYN sampling heavily biases the distribution, as by definitisamples
at least one packet for each flow. At high sampling steps, the SYN packkely to be also the
only sampled packet, which introduces a significant distortion in the aggrégatures. In other
words, there will be a large portion of flows with a single sampled packettheamdfore rather poor
estimation of all relevant flow properties. While, as we will see, traffic diaation accuracy is
not affected by this distortion, for the time being we can conclude that biaebdiques are not
indicated in the context of traffic monitoring and characterization.
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Figure 7. Mean and variance of the HD distortion score fortheist group of features as a function of the
sampling step for different sampling policies.

If we focus on the difference between datasets, we see that theynkerlralmost in the same
order by different sampling policies: apparently Auckland and UniBStlaeeeasiest one, which
seems to be in contrast with our previous analysis. Yet, recall that wedoenttioned distortion
scores over the robust subset of features: in the case of Aucklasdpeans that we are averaging
with TCP features getting extremely low scores due to the measurement aéfacoutlined; in
the case of UniBS we have removed exactly those features that we saily ldéstorted in Fig[®.

It is also worth noticing that sampling error saturates, in the sense thattidistecores do not
increase as fast as the sampling step, which is exponential. The reasmhaf behavior is twofold:
first, as most features are estimated from the observation of a singletpéekedegrade gently
when increasing the sampling step; second, some of the artifacts showegnetious section may
still arise (i.e., features whose distortion score decreases rather theadimg for higher sampling
rates).

6. SINGLE-FLOW FEATURE DISTORTION

To deepen the analysis of the impact of sampling on traffic measurement, iadtigswve study the
distortion of per-flow features and, with respect to the former sectiochaege both the viewpoint
and the metrics employed to measure the impact of sampling. We also apply thmdtiéor gain
metric to assess the amount of information conveyed by each featureasalgisis is instrumental
for the evaluation of traffic classification accuracy, that we will carryrotie next section.

To avoid cluttering the pictures, this preliminary analysis will be done corisglenly the UniBS
dataset, whose ground-truth is the most reliable; however, we will cometbabe whole dataset
for our last experiments to draw our general conclusions.

In the remainder of this section we always refer to Systematic SYN samplinighwias
introduced specifically for traffic classification, as it gives us two mairaathges over the other
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Figure 8. CDF of (left) Err% and (righf) for UniBS trace and different sampling step.

policies. First it overcomes the problem of dataset representativeioesg least one packet per
flow is always sampled: in this way even protocols with short flows (cpmeding to a small

probability of being sampled) are, nevertheless, included in the datdeetsafmpling. Second,
the SYN packet carries very important information about the related flogv {@itial sequence

number, initial timestamp, eventually some TCP options) whishat can leverage to improve
the estimation of many flow properties.

6.1. Overview of Sampling Impact

Following the same approach of SEL. 5, we first consider the whole get-@ibw features, to gather
an overall picture of the impact of sampling. Fij. 8 shows the distributionsaflative percentage
error and the correlation coefficient between the sampled and unsangbles of all features for
the UniBS trace, comparing different sampling steps represented with tistinves.

Focusing on the percentage error plot on the left, a large number of meagpears not affected
by sampling, scoring a 0% error; we must not forget, however, thatigtebadition may be biased
towards zero by features that are estimated by a single packet inspectibat score their default
value thatt st at assigns to features it cannot evaluate. On the other hand, an increasiiom
of the features, from 10% fak = 2, to 30% fork = 100, are completely distorted with an error
greater than 100%. Interestingly, this partition of the features becomesandmmore sharp with
increasing sampling step. However, high distortion does not necessarlly tinap such features is
useless for traffic classification: indeed, provided that distorted fesne still clearlyseparable
across applications, their information would still be extremely valuable fosifieation purposes.
For completeness sake, we reported also the correlation coefficieribuisins in the right plot,
from which the same conclusion can be drawn the same percentage oésahtat scored a 0 error
gets the maximum value of correlation, and again higher sampling steps camngeralegradation
highlighted by a larger portion of features with small correlation with the untethgase.

Let us now focus on specific features. We present two examples in dftersplots of Fig[0:
the left plots are related to the maximum packet size observed in a flow, whilggtiteones
show the average RHT As previously done, we select two rather different features: oseaha
low distortion (maximum packet size) and we expect it to carry some importéorimation for
traffic classification; the other (RTT) is instead affected by sampling andj¢lographical host
distribution, but is otherwise unrelated to traffic type. On the x-axis wertepe value of the
feature in the absence of sampling, while on y-axis the one when a sampling witld0 is applied.
We represent flows belonging to traditional client-server (CS) applicaiiothe top plots and to

fWe relax the RTT computation by avoiding to match TCP sequenaears, and simply take the time elapsed between
consecutive packets in different directions. Notice that sathRIT T is roughly two orders of magnitude bigger=€ 100)

with respect to the unsampled one: hence, in principle we carigct the sampled RTT by scaling it by a factorAt

the same time, since the RTT feature is unrelated to the traffig, gpd thus not relevant for the purpose of traffic
classification, we avoid to introduce the correction
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Figure 9. Scatter plot of features values for unsampled avid Sampling ¥ = 100 for UniBS trace,
contrasting peer-to-peer (P2P) and traditional cliemtesg(CS) applications.

peer-to-peer (P2P) applications in the bottom plots, in order to see wtditfezent classes of
applications correspond to different behaviors under sampling.

The plot allows us to gather some observations. For the packet size, wileapplications
employ either very small (signalling) or full-size (data) packets, clienteseapplications often
use medium-sized packets as well. Yet, for CS applications the featuresdmeestimated mostly
of the time, meaning that usually only a single small packet (e.g., SYN) of & &®iflow is
sampled due to biased-SYN sampling; on the other hand, this same featuredlg@valuated for
P2P applications, whose longer exchanges increase the odds that tier romh samples bigger
packets as well. In the right plots, we can find again two clouds: the toponeentrated specially
in the top left corner for P2P, and the bottom one, concentrated in thelasssto the origin, which
is equally composed by P2P and CS flows. A possible explanation of thisibelgthat many
P2P flows have intermittent but long-lived flows (for instance becausestieak with a recurring
peer after a while), which yields estimation of very large RTTs (due to pathagACK with the
wrong data message); on the contrary, CS applications have shorterthatwreduce the likelihood
of pairing a very late ACK and allow an easier measure of the RTT. Again ksldi&e traffic
belonging to different applications is differently impacted by sampling, whigiogsl news for our
classification purposes.

6.2. Ranking Features

After this preliminary evaluation of feature distortion, we want to assess egeadation of the
amount of informatiorwonveyed by features due to traffic sampling. This analysis is complementary
to the one presented in [15], where authors analytically study the errodinted by sampling in
NetFlow features, but do not evaluate whether sampling also impacteftrenation content of
such features, which is a critical component of the classification process

To measure this quantity we finally use the Information gain score introducgddb4.2.P. We
use this measure to partition the features set in two groups, using a simpletbrbased criterion:
(i) the most-relevanfeature group including features whose information gain is greater thén 1 b
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Table V. Feature Information gain for UniBS trace at diffdreampling rates.

Features Unsampled Sampled k=2 | Sampled k=10
Score | Rank | Score| Rank | Score| Rank
Server-IP-address 1.68 1 1.68 1 1.68 1
cwin-min-c2s 1.49 2 1.20 6 0.60 14
min-seg-size-c2s| 1.48 3 1.22 5 0.47 23
cwin-max-c2s 1.47 4 1.11 8 0.56 15
max-seg-size-c2s| 1.43 5 1.17 7 0.46 24
initial-cwin-c2s 1.41 6 0.71 26 0.29 32
First-time 1.37 7 1.37 2 1.37 2
cwin-min-s2c 1.35 8 1.06 11 0.53 16
Server-TCP-port | 1.34 9 1.34 3 1.34 3
initial-cwin-s2c 1.33 10 0.77 22 0.30 31
Client-IP-address| 1.31 11 1.31 4 1.31 4

cwin-max-s2c 1.28 12 0.99 14 0.49 21
min-seg-size-s2c| 1.22 13 0.96 16 0.51 19
max-seg-size-s2c,  1.21 14 1.03 12 0.50 20

Last-time 1.14 15 1.09 9 1.02 5
win-max-s2c 1.08 16 1.07 10 0.98 6
Completion-time | 1.03 17 0.97 15 0.42 25
win-min-s2c 1.02 18 1.01 13 0.94 7
unique-byte-s2c | 1.02 19 0.74 23 0.42 27
data-byte-s2c 1.01 20 0.74 24 0.42 26

(i.e. that are able to discriminate between two labels); (ii) the least-rele\atntéegroup, containing
all the remaining features. The performance of such subsets of featilrbe evaluated in the next
section; here we report the scores for the most-relevant featureb.iVitagether with their rank,
comparing the unsampled case with the sampled caseuwtli2, 10}.

The information-gain metric partitions our feature set as expected. Fongestieatures like the
client ephemeral source port, which is chosen randomly upon conneetiop, clearly ends up in
the least relevant feature set, being useless for the classificatiorspr@ge the other hand, the
server |IP address exhibits always a high score regardless of théirsanage: both the fact that this
feature is correctly estimated by inspecting a single packet and the reduicdxdr of servers in the
UniBS trace concur to make this value a strong discriminator.

Besides, notice that the larger the sampling period, the smaller the numbertukfe showing
scores greater than 1 bit. Additionally, since the ranking changes frarsampling rate to the
other, this suggest that the most-relevant feature set gathered fomplesl traffic may no longer
be the same for higher sampling.

To visually represent the effect of sampling on the most-relevant feaaityeve use the parallel
coordinate plot of Figl_10-(a). Each line represent one feature andects the Information gain
score and mean percentage error for that metric for the two samplingksteps, 10}. Two evident
patterns emerge from the picture, which are highlighted by means of twoatifféne types. Full
lines clearly represent those features evaluated from a single-paskeiction: they have high
information-gain, which means they are extremely correlated with the applidabeh along with
a low relative error distortion, which means they are correctly measugeddiess of the sampling
step. On the other hand, features denoted by dashed lines, thoughegoadet! by sampling (their
percentage error increases with sampling), are included in the mostresatebecause they still
bring benefit to the classification, as testified by high information gairk fer2, moreover only
moderately decreasing fér= 10. Hence, while these features are degraded under sampling, they
still allow to separate application labels as exemplified in[Hig. 9

In Fig.[10-(b) we extend our considerations to the whole set of feateaeh feature is represented
by the point whose coordinates are the information gain scoré (2,10} respectively on the
x and y axis, using different point types for most relevant (empty sg)and least-relevant (filled
circles) features. First, the picture confirms that the ranking of featareet stable: notice that
the score of some least-relevant features exceeds the one of a fewetewatit ones fok = 2
(remember that the partition of the feature space has been performedhesiagking of unsampled

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Network Mgm(0000)
Prepared usingnemauth.cls DOI: 10.1002/nem



20 DAVIDE TAMMARO ET AL.

1 100 1.8 ‘ : .
Least-relevant Py
Most-relevant o p
o =
£ T L2y
S g < B
2 m 8 o A
= o e
€ 06f - o
=
\ ; = o b T
N/ A L na]
7 :’/ °®
O/f $ % < ° 0‘O 0.6 1.2 18
% ° % ) InfoGain k=2

b
@ (b)

Figure 10. (a) Parallel coordinates plot for most-relefaatures and (b) scatter plot of information gain for
all features witht = 2, 10.

features). This behavior is more evident considering 10: some features in the least-relevant
group should be considered as good discriminators, not only bechilmehigher scores, but rather
because they fall on the bisector, showing no degradation of their infermeontent. Overall,

it looks like it is extremely difficult to predict how the information content of attee might be
degraded by sampling, as this may furthermore vary depending on the sagustpin This suggests
using the whole features set and letting the classification algorithm deal witlrikize next section,
which compares the classification accuracy of different featuresvgetwill see whether this is a
good strategy.

7. TRAFFIC CLASSIFICATION UNDER SAMPLING

After the analysis of the distortion due to sampling in both aggregate [Bend53iagle flows
features (Se¢.l6), in this section we provide a detailed evaluation of the timfothe sampling on
traffic classification. More precisely, we first gather baseline perfooméor different features sets
for unsampled traffic (SeE._7.1) and then we measure the impact of traioliogep (Sec[712) for
sampled traffic, considering the UniBS trace. Finally, we extend our inegigigto other datasets
as well (Sec[7]3). We report the overall accuracy of the classificationomit the detailed per-
application accuracy as such an analysis is already fdund [15] anchaveather concentrate on
uncovered aspects of traffic classification under sampling.

7.1. Impact of Feature Set

We start by comparing the classification performance of different sdesatifres with unsampled
traffic, using only the UniBS trace. We consider the following sets:

S1 baseline-featuress a simple set of features, that basically contains the information derived
by a flow-level monitor (e.g. NetFlow) defined as in [14].

S2 all-featuresis the whole set of features producedttst at , coherent with([34].

S3 no-IPs, obtained removing from the whole set both source and destination llessdd; i.e.
S3 =52\ {srcIP,dstIP}.

S4 no-IPs/Time/Flags obtained removing from the whole set IP addresses, TCP timestamps and

flags, i.e.54 = S2\ {srcI P, dstI P, timestamp, flag}.

S5 no-Ports, obtained removing from the whole set both source and destination tratesyer
port, i.e.S5 = S2\ {srcPort,dstPort}

S6 no-IDs, obtained removing from the whole all flow identifierS6 = 52\
{srcIP,dstIP, srcPort,dstPort}

S7 most-relevant comprising the features listed in T&h. V, formally definedb@s= {z € S2:
InfoGain(x) > 1}
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Figure 11. Classification accuracy achieved by differeatifees sets with unsampled traffic for UniBS trace.

S8 least-relevantcomplementary of the most-relevant features setSite= 52\ S7

The first four groups are in common with [14], in order to have a directparison with previous
work. We notice that features included in the baseline-featureSketch as destination IP and
port, start and end time and total transferred bytes, were already ideéasifithie most reliable ones,
showing high information gain in our earlier analysis ($éc. 6).

The accuracy achieved by these features sets in our experiments iedepiEig[ 11, where we
also plotted the results reported by|[14], where available, as a comparetome underline that this
is anindicativecomparison as results are not directly comparable for three reasshghiirdataset
differs; second, the machine learning technique differs; third, therslaght differences in some
feature sets as the overall s¥2 produced byt st at is a super-set of the one considered.inl [14]
(see the discussion in Séc.13.2).

Speaking about the comparison, we gather that for the featureSkarsd S2 the accuracy for
the UniBS dataset is higher than that reported_in [14], whereas valaesdsioy sets$53 and.S4 are
coherent with previous results. To explain this behavior, we must go toaitie information gain
score. We have noticed before the high correlation between the applitztielnrand the network-
layer identifiers for the UniBS trace (i.e., IP address of the server),hwdaases the performance
drop from setsS1 andS2 to setsS3 and S4.

Considering all subsets, we gather that, as expected, the most-relestinefset exhibits the
best accuracy, though being the smallest one. The compleg2dastead turns out in a slightly
worse result: we see a little overfitting phenomenon (i.e. useless featurebitig the classification
process), but the difference is negligible in our case. Thereforegstimate the prominence of
feature selection less relevant, and will consider other, less exploseésis what follows.

We make a few final remarks before changing subject. The perfornudsetss3, S5, S6 further
shows that IPs are much more relevant than ports, causing a largeasedén performance when
removed from the feature set. Finally the last vertical bar, though medeto a quite numerous
set of 85 features, shows as expected the worst performance asgtises features carrying less
information about the application label. Notice that accuracy howeveredsc@s%, meaning that
the set of the least-relevant features still includes valid discriminators.

7.2. Impact of Training Policy

Clearly, the selection of flows to include in the training set has a great i#uen the final
classification accuracy (i.e., how to find representative samples, howdaltia class imbalance
problem, etc.). Yet, in this paper we are more concerned in a novel faetorwhether training and
validation data should be gathered at the same sampling rate.
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Figure 12. Impact of Homogeneous vs Heterogeneous tragangolicies at varying sampling rates in terms
of flow and byte accuracy.

This is an important point as it means that ISP may need to use differenfickigsn models,
one per each sampling rate, or may use a single unique model for all rates.fbllowing, we use
k7 to denote the sampling step used for the training datakanfbr the one used for validation
data.

¢ Homogeneous classificatiarin which training and validation sets contain data obtained with
the same sampling rate (i.é&4 = k). This corresponds to the case of ISPs using different
training sets, one for each sampling rate. Results shown in the previdishseeere gathered
using this training policy.

e Heterogeneous classificatignin which training and validation sets contain data obtained
with different sampling rates (i.ekr # kyv). Intuitively one may think that richer data with
a lower sampling period might contain more information that could be suctigsstploited
for the classification. At the same time, we may expect that under samplingedherd
estimation error will grow large, with a corresponding information loss. Inesgperiments
we investigated the full space resulting from the cross product of k-, but we report here
only two examples: first the extreme case where we train the machine with uleskdaa
(kr = 1) and then the results gather with = 2, i.e., the minimum level of sampling.

We test these policies on the UniBS trace, performing a cross-validatiorusing 10% of
this data as training set and the rest as validation set. The cross-validatioadpre repeat
the train/validation process 10 times, randomizing each time the training set lfanding the
validation set as a consequence). As for the class imbalance, we toakcaxtr in building the
training set so that the proportion of the different application are the sathe original data (i.e.,
as 49% of the original trace is constituted by HTTP flow, the training set is osatbfor 49% of
HTTP flow samples).

In Fig.[12 we report the flow (left plot) and byte (right plot) accuracyaated by the C4.5
algorithm with the complete sef2 of features provided by st at (whose performance was
only slightly affected by overfitting with respect to the most-relevant feasetg for both the
heterogeneous and homogeneous cases, for increasing samplingVstepport two cases of
heterogeneous policies: first the case where the classifier is trained mgdmpled data, i.e.,
kr = 1; second the case where the classifier is trained with lightly sample data&with2. As
a reference and lower bound, we also plot the results of two dummy clasisificorocesses:
(i) Uniform selects the classification label uniformly at random among the possible s;ldgse
Proportionalselects the label at random, but with a probability proportional to the nunilfiens
belonging to that class.

Looking at the flow accuracy, the homogeneous case exhibits the Isestsreachieving an
high accuracy which furthermore does not deteriorate under moreesgjge sampling. In the
heterogeneous unsampled case, the accuracy drops consideradtly alith a sampling period of
kv = 2 and then decreases untiligt = 100 it achieves only slightly more than 50%, which is close
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Figure 13. Flow classification accuracy for different tmaeed features sets (homogeneous trairing,100
sampling).

to the proportional random labeling process: in other words, the heteeowgss training process was
only able to correctly learn thidbow proportion(due to our balanced training set selection policy).
The heterogeneous case with = 2 has a better performance, though far from the homogeneous
case: this means that, whatever the sampling ktept is always better to train the classifier with
already sampled data (i.é > 1) when this is the kind of data to be classified. Interestingly, there
is a much smaller difference between the two training policies in term of byteawceven in
harsh sample conditions: this means that elephant flows are alwaysthonlassified, whereas
classification errors are much more frequent for mice flows.

In agreement with [15], these results show that, even though featwrdsstorted, the amount of
information they convey on the application label is still relevant for the classidin, as shown by
the analysis in the previous section as well. On the contrary, while unsangieddll captures the
properties of real traffic, it is unsuitable to characterize, and thexefassify, the sampled traffic.
Hence, ISPs shall use a specific classification model for each samplengrracase of variable
sampling rates, this may not be feasible: however, as classification dsgamothly between the
homogeneous = ky and heterogeneous- = 1 cases (i.e.k7=10 performs better thak,=1
for k,=100), a viable compromise would be to select the clogesirom a set of models.

7.3. Impact of Dataset

Finally, we extend our analysis to the other traces. In principle we wereregty interested in
testing theportability of the method: i.e., to assess the performance of a model trained on a trace
and validated on the other traces. Unfortunately though, due to the heteibgof the dataset,
a thorough and coherent comparison is possible only with an extremelgagdet of protocols
(only HTTP, HTTPS and IMAPS are common to the three traces, and no mamedtiprotocols
are common to any 2 traces), resulting in a statistically not significant compari®refore,
we limitedly report results considering each dataset in isofatigve use a sampling period of
k=100 (a common value used in operational networks), the C4.5 algorithm in the lerreogs
case, with data split again in 10% and 90% for training and validation setsat@sgy. The whole
classification process is performed separately for each dataset, usisgtshof features defined in
Sec[7.1, and results are reported in Fig. 13. Notice that, as the Auckiamacttruth is established

$We however performed the portability experiments (i.e., tgstin each trace and validating over the others) on the
reduced protocol space, obtaining rather low accuracy peence. To give the reader the intuition why this happens,
consider that IP address is the most prominent discriminator, atdRladdresses clearly differ across traces.
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based on well-known ports, we expect 100% accuracy when this éetincluded in the feature
set (on which the ground truth for this dataset relies).

The set of most-relevant features is consistently the one yielding thedsest, for all datasets.
Interestingly, also the set composed by all features achieves neargntiegperformance, in contrast
with the common belief that classifiers are misled by an excess of informaticen nfedter of fact,
notice that the set of least-relevant features still contains a valuable ambunformation as it
correctly identifies more than 80% of flows for any trace.

As previously done, we also investigate the importance of IP addressesraarsport-layer
ports features by evaluating the classification accuracy after their rénvggdind that transport
layer identifiers are particularly important for classification purposescéneemoving them has a
great impact on the accuracy (especially for Auckland as expectedyetsely, IP addresses are
particularly relevant only for the UniBS trace, where, as previoushentesl, the same server IP
is very often associated with the same application, thus becoming a good dis¢dminhile in
more diverse traces removing IP addresses from the feature sehato&ifect the performance at
all. Removing both transport and network layer identifiers gives the wessits — for the UniBS
even worse than the least-relevant set of features. Moreover, tf@mance loss may be more
pronounced than in the unsampled case shown earlier, meaning that itiforroentained in IP
address and ports is even more important under sampling. At the same timhb,ttitigemoval of
IP and ports does not drastically compromise the accuracy in the Aucldaedwhere the features
of the different traffic classes are likely more separated.

8. CONCLUSION

In this paper we empirically studied the impact of packet sampling on traffic uneragnt and
traffic classification. Sampling is already a very common practice in operatiehsorks and the
increasing trend of network traffic is likely to spread its adoption even muoieng operators. For
this reason, in this work we accurately assessed the amount of informasibwhen applying
sampling to traffic characterization, as well as the repercussion of ssgloitothe performance of
different applications of sampling data, in particular of traffic classification

We processed an extremely heterogeneous dataset composed aldketrtpaces (representative
of different access technologies and operational environments) wittffig imonitoring tool able
to extract several traffic features both in aggregated and per-flsiwicia. The tool was modified
ad hoc to apply different sampling policies and arbitrary sampling rates toabestrMoreover, in
an attempt to foster cross-comparison in the community, we made an effortesjleat to both
previous literature (i.e., by considering the same features seis of [1dfuture research (i.e., by
using open datasets and describing our labeling ground truth). Suchlbeted us to conduct an
extended experimental campaign with two main objectives: (i) assessinggiasldéon introduced
by different sampling policies and rates in aggregated traffic featurespectively of the possible
applications (e.g. classification, intrusion detection) of such measureriéresaluating whether
flow-level features derived from sampled data are suitable for statigtidtt classification. In the
following, we separately summarize the main contributions of this work.

8.1. Impact on traffic measurement and characterization

Our experiments, which considered four sampling-policies (namely systemataom, stratified
and systematic SYN sampling), about 170 traffic features and two distortitncsg/ielded the
following findings.

o Unfortunately most of the features are already distorted at low sampliggrdiess of the
sampling policy.

e Generally a lower degradation affects features based on the inspettasingle packet
(such as those related to IP and UDP) with respect to those depending andlysis of
more packets. An exception is represented by those features relying ovsglection of very
specific segments (e.g., some TCP options).
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Regardless of the protocol layer, we isolated a small set of featurestriabsampling across
all the datasets.

A sensitivity analysis conducted on this reduced set shows no remawk@datage of one
sampling policy over the others, thus partly contrasting previous studiesan é&random
sampling.

We identify two reasons for the previous finding: the statistical multiplexing meylyp
eliminate the bias induced by simple strategies (e.g., systematic sampling); sétsend,
evidence may have been hidden by previous work which typically focosedfew specific
features only (e.g., traffic volumes).

We spotted a number of counter-intuitive behaviors and measurementtart§howing that
it may be challenging to correctly assess the impact of sampling even on sim@ane®a

8.2. Impact on traffic classification

Regarding traffic classification, we specifically focused on a biasédgrgetical, sampling policy
(namely systematic SYN sampling) which overcomes the problem pointed out #)[1F]
concerning the statistical significance of the results. Before applyingléissification based on
C4.5 classification trees, we quantified the information conveyed by featibiait the application
label by means of the information gain metric. The main findings of our expetafieiow.

The cross-investigation of the pure feature distortion and its informationigss shows a
complex non proportional relation. In particular, there are few featwesse information
gain remains unchanged under sampling — interestingly they almost coincidehoga

features derived from a single packet and less distorted by sampling.

Even more unexpected, some features, though heavily distorted, shieighraimformation-

gain score, thus proving important discriminators.

The information-gain ranking depends on the sampling rate applied, thgesigy the use
of a larger features sets for training the classifier which appears onhtlgligffected by

overfitting.

Coherently with[[15], we show that even in our larger dataset an honeogertraining (i.e.,
where the same sampling rate has been applied to both training and validafiich yialds

extremely good results, even for harsh sampling (e.g. 1 out of 100 sampling

If on the one hand the former observation implies that different trainingsbetsld be kept
for each sampling rates, on the other hand the classification accura@ddsgyracefully
for intermediate heterogeneous solutions (i.e., training on sampled dataitlbat eifferent

sampling rate). Therefore, good results might be achieved by employiey &dining sets
obtained with carefully chosen, representative sampling rates.
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