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Abstract—Content Centric Networking (CCN) is a promising
architecture for the diffusion of popular content over the Internet.
While CCN system design is sound, gathering a reliable estimate
of its performance in the current Internet is challenging, due
to the large scale and to the lack of agreement in some critical
elements of the evaluation scenario.

In this work, we add a number of important pieces to the
CCN puzzle by means of a chunk-level simulator that we make
available to the scientific community as open source software.
First, we pay special attention to the locality of the user request
process, as it may be determined by user interest or language
barrier. Second, we consider the existence of possibly multiple
repositories for the same content, as in the current Internet, along
with different CCN interest forwarding policies, exploiting either
a single or multiple repositories in parallel.

To widen the relevance of our findings, we consider multi-
ple topologies, content popularity settings, caching replacement
policies and CCN forwarding strategies. Summarizing our main
result, though the use of multiple content repositories can be
beneficial from the user point of view, it may however counter
part of the benefits if the CCN strategy layer implements naı̈ve
interest forwarding policies.

I. INTRODUCTION

With the mass-market adoption of bandwidth intensive

applications, the explosion of video over the Internet and its

forecasted growth, the largest part of network traffic is today

represented by popular content that is downloaded repeatedly

across network links from several users [2].

To relieve traffic redundancy in the current content-oblivious

Internet, service-specific optimizations such CDN caches and

P2P overlays, have generally been built over the top of the

infrastructure. This trend has recently reversed with the pro-

posal of a number of content-oriented architectures, referred

to as Information Centric Networking (ICN) [6], that advo-

cate service-independent in-network caching as a fundamental

lower-level building block of the future Internet.

The move from a network offering access to hosts to

a network offering access to data constitutes, beyond any

doubt, a paradigm shift. In the relatively short history of

telecommunication networks, this shift may be comparable the

introduction of packet switching, who ultimately led to the

Internet as we know it. However, as any important shift, the

move toward ICN networks will happen only if it can provide

a substantial economic advantage (along with a viable business

model) by means of a technological breakthrough – which we

aim at assessing in this paper.

Content Centric Networking (CCN) [8] is one of such

proposals: in CCN, content is sent in reply to interest packets

addressing named data chunks, any may get cached by any

CCN router along the way back to the request originator. In

CCN routers, caches de facto replace traditional buffers: while

the aim of an IP router is to dismiss packets as quickly as

possible (i.e., by forwarding them to the next hop interface),

the aim of a CCN router is instead to keep the most popular

data for the longest possible (useful) time.

Yet, despite the large caching literature that already exists,

a number of architectural details make CCN study challenging

and novel at the same time. Differently from previous studies,

CCN routers are arranged as arbitrary network topologies.

Moreover, CCN stores very small data chunks, of the order

of a single packet, as opposite to traditional architectures

where full objects (or very large chunks) are generally cached.

Furthermore, each new object request generates a stream of

requests for data chunks: hence, the request arrival process is

highly correlated, unlike in traditional caching studies. Finally,

the large size of CCN router caches and the tremendous size

of Internet catalogs, makes the study of CCN performance a

daunting task.

In this work, we dive into CCN performance by means of

simulation, angling for a realistic Internet-wide YouTube-like

catalog. By exploring several system aspects –such as multiple

topologies, user locality and content popularity models, CCN

forwarding and caching replacement strategies– we get a grip

of CCN performance. We offer our simulation tool to the

scientific community as open source software at [1].

II. REFERENCE CCN SYSTEM MODEL

In CCN, users request content by sending interest packets

for named data chunks to their CCN access router: in case

such data is already stored in the router cache (also known as

content store in CCN), it is immediately sent back in reply to

the user interest. Otherwise, the CCN router inserts a reference

to the interface from where the interest came from in the

Pending Interest Table (PIT) and forwards the interest packet

on some interfaces (aka faces in CCN) according to a decision

taken by a strategy layer on Forwarding Information Base

(FIB) data disseminated by a routing protocol. In case multiple

requests for the same content hit a CCN router that has already

created a PIT entry (but has not received the content yet),

the PIT is appended with references to the latter requests:



this way, CCN performs request aggregation, reducing further

the network traffic. Potentially, in case the data of interest is

not cached at any content store of intermediate CCN routers,

interest packets reach the original data repository. The data

chunk sent in response to the interest packet travels then

back according to PIT information, and PIT references are

removed once interests are satisfied by sending data on the

corresponding interfaces.

Despite the strategy layer plays an important role in the

interest forwarding, in the original CCN proposal the “default

strategy is to send an interest on all broadcast capable faces

then, if there is no response, to try all the other faces in

sequence” [8]. While this strategy is efficient is searching

the local neighborhood and will eventually find the content

of interest, it may be complex to tune in practice. Indeed,

while TCP relies on the estimation of Round Trip Time (RTT)

beteween data and acknowledgements for self-clocking, CCN

breaks the end-to-end assumption: as the CCN termination

end-point may vary from chunk to chunk, the same goes for

the corresponding RTTs between interests and data. Setting

an appropriate face timeout is thus not trivial, since long

values may result in high delay for the user, while short

values may trigger unnecessary requests. Also, the strategy

is not optimized in case data is available at multiple source

repositories – which is commonplace in today’s Clouds, due

to data replication over multiple points of presence (PoP) for

resiliency, load balancing and low service latency.

In this work, we consider the impact that alternative strategy

layers have on the overall CCN caching performance. As

we describe in the reminder of this section, to gather rep-

resentative CCN performance we consider a network of CCN

routers, configured with different cache replacement policies,

and interconnected by either regular or real topologies. The

CCN network serves a realistic YouTube-like catalog, whose

objects may have a geographically biased popularity and are

possibly stored at multiple PoPs.

A. Evaluation scenario

While work on ICN/CCN performance has started to appear

[3], [4], [6], [9], it generally considers (i) simple cascade or

trees topologies (with the exception of [6]), (ii) modest catalog

sizes (varying from 1,000 [6] to 20,000 objects [4]) and (iii)

small cache sizes (varying from 6.4MB [9] to 2GB [4]).

To counter these limitations we (i) consider both a regular

4×4 torus topology, as well as the topology of the GEANT

network, interconnecting the European research and education

institutions. As for (ii), we consider the catalog size of

YouTube, estimated by [5] to amount to 108 video files, having

geometrically distributed size with 10 MB average [7], yielding

to a 1 PB catalog. As for (iii), motivated by technological

constraints of nowadays memory access speeds, we select as

in [3] the size of individual caches equal to 10 GB: thus, each

cache can only store a very small portion (10GB/1PB=10−5)

of the whole catalog.

We assume to operate in a non-congested regime and

consider links of infinite bandwidth, so that the network delay

matches the propagation delay of each link. We notice further

that CCN studies typically implement a Least Recently Used

(LRU) cache replacement policy [4], [6], [9]. Yet, we argue

as in [3] that, due to the fact that CCN caching operations

must happen at line speed, even LRU may be complex to

implement in practice – hence, we also consider a random

replacement policy (RND) in the evaluation. Finally, we set

CCN data chunk size to 10KB as in [4].

B. Multiple repositories and strategy layers

As it happens for IP networks, we assume that forwarding

and routing happen at two separate timescales. In other words,

an external routing process modifies the FIB at low frequency,

so that paths between CCN routers and repositories can thus

be considered constant during each simulation.

As previously stated, nowadays Cloud services may repli-

cate data in several PoPs. An high level view of the scenario is

depicted in Fig. 1 (using the 4×4 torus topology for the sake

of illustration). We consider that content is either stored at a

single repository |R| = 1 or at multiple repositories |R| ≥ 1.

In the single repository case, we forward interests along the

shortest path toward the repository. In the multiple repositories

case, we instead consider two forwarding policies: specifically,

interests are forwarded either (i) along the shortest path leading

to the closest repository, or (ii) along multiple shortest paths

leading to all repositories in parallel. Since we do not consider

local access networks, no broadcast interface is available, as

routers are interconnected with point-to-point links. Hence,

performance of the original strategy [8] should lay between the

above two extreme cases. Also, we expect the use of parallel

paths to improve user-centric performance, at the price of an

increased interest (and data) load on CCN routers.

For the sake of simplicity, in the following we consider that

content can be stored in either a single or four data-center

locations |R| = {1, 4}. On each simulation, the location of

the |R| repositories is randomized, and results are averaged

over 40 runs to smooth out stochastic variability.

C. Content popularity and user locality

As usually assumed in the literature and pointed out in [5]

for YouTube, we consider content popularity to follow a Zipf

distribution. At the same time, as there is no consensus on

the exponent α of the Zipf distribution in the CCN literature

(α varies between 1 [6] and 2.5 [4]), we select a large range

of values for α ∈ [0.5, 2.5] for a more robust analysis (see

Sec. III-A).

We model the aggregate arrival of new object requests as a

Poisson process (having average rate λ = 20Hz). Notice that

once a user requests the first chunk of a given object, it will

also generate the subsequent interests for the following chunks

to completely download the file. Notice further that, while in

IP networks a user sending rate is typically determined by

some end-to-end congestion control algorithm (e.g., TCP), this

end-to-end model no longer holds under CCN. At the same

time, as CCN does not implement a TCP replacement for the

time being, we assume for the sake of simplicity that users
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Fig. 1. High level view of the CCN scenario.

have a fixed w = 1 interest window (i.e., users wait for their

outstanding interest to be satisfied by a data chunk before

sending out a new interest).

Concerning the user requests, we foresee that irrespectively

of the content popularity model and user arrival rate, there can

be a locality bias in the request generation process. Reasons

for this bias are easily figured out by considering, e.g., the

language barrier in the GEANT network, that interconnects

several European countries each speaking a different idiom.

To take this bias into account without affecting the overall

popularity distribution we “polarize” the user requests as

follows. For each new request, we first randomly generate an

object ID according to a Zipf popularity distribution. Then, we

map this new request for ID to a random user u in the network

(say, user a in Fig. 1), attached to an access CCN router C(u):
in case this is the first request for ID, we set C0(ID) = C(u).
Once subsequent requests for ID are generated, we bias the

user extraction process so to favor the selection of users closer

to C0(ID) (say, user b will be more likely chosen than c in

Fig. 1). Specifically, a candidate user v is extracted at random

over the whole network, and the distance d(C(v), C0(ID)) is

evaluated: the request will then be mapped to this new user

with a probability P (d) that monotonously decreases with this

distance (represented with fading user color in Fig. 1). If the

mapping fails due to P (d), new candidates are extracted at

random until the mapping succeeds. In this work, for the sake

of simplicity, we select

P (d) = max

(

0, 1−
d

L+ 1

)

(1)

with a locality radius L within which the content is confined

equal to L = 2. In practice, candidates behind the same access

CCN router C0(ID) will always be accepted, candidates at

one (two) CCN hop(s) will be accepted with probability 2/3

(1/3), and faraway candidates will never be accepted. This

allows for some “penetration” in the language barriers, as

sometimes neighboring countries have shared languages (e.g.,

France, Belgium and Luxembourg, or Austria, Germany and

Switzerland, or Italy and Switzerland, etc.).

At the same time, language barriers may not apply in the

case of a national ISP: notice that (1) degenerates in the

uniform model for L → ∞, so so that requests may come

uniformly at random from any user.

III. PERFORMANCE EVALUATION

This section reports results of our simulation campaign. We

use a custom CCN chunk-level simulator, developed under the

Omnet++ framework, that we make available to the scientific

community at [1]. For each simulation point, we collect the

metrics of interest when the cache hit rate converges to a

stationary value (which usually take about 1 hr of simulated

time from the time the caches fill up), and we average results

over 40 simulation runs.

As for any caching system, CCN promises to reduce the

amount of traffic flowing in the network, and to reduce latency

for the end users as well. Typically, the efficiency of a cache

is measured in terms of the hit rate or, in CCN terms, the

probability that the content chunk of interest is found at a

given content store.

As CCN implements a network of caches, it is also impor-

tant to consider the hop distance traveled by an interest before

a content store is hit – and the corresponding data travels back

until the interest originator. Indeed, the hop distance roughly

reflects the overall load on the network and the end-user

delay. At the same time, from the chunk-level hop distance

it is hard to relatively compare performance across different

topologies (due to difference in the absolute path lengths) and

users (as it mixes chunks of popular and unpopular content).

We thus define a normalized distance, that relatively weights

the hop distance with respect to topological properties of the

considered network. Given a user u and an object j, we denote

the downloading effort:

ηu,j =

∑size(j)
i=1 di

|D|size(j)
(2)

where size(j) represents the size (in chunks) of object j, di
represents the distance traveled by the i − th chunk of file j
and |D| = d(C(u), R(j)) represents the shortest path distance

between the CCN access router C(u) of user u and the nearest

repository R(j) storing j. Notice that di only counts CCN

router hops, so that η varies in the range [0, 1]: when η → 0
a user finds the whole object in the content store of its CCN

access router; when η → 1, the content is downloaded entirely

from the nearest repository.

Finally, as a simple metric to evaluate the whole system

efficiency, we take into account the raw number of data and

interest messages sent over the CCN network (during the first

hour of simulated time, as simulation duration may differ

across runs).

A. The popularity dilemma

Due to lack of consensus on the object popularity settings,

let us start by a preliminary investigation of the system

performance for varying exponent α of a Zipf distribution. For
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the sake of simplicity, we refer to a baseline scenario with a

4×4 torus network, LRU replacement policy, uniform demands

and a single repository. By definition, the Zipf distribution

probability equals P (X = i) = 1/iα

C with C =
∑|F |

j=1 1/j
α

where i is the rank of the i-th most popular file in a

catalog of size |F | files. Thus, P (X = i) corresponds to

the percentage of requests for the i-th object, and we further

denote Πi =
∑i

j=1 P (X = j) as the cumulative percentage

of requests directed to the set of i most popular objects.

Fig. 2 reports, as a function of α, the object representing the

95-th percentile of the request distribution, averaged over all

users (i.e., Eu[ηu,ID] with ID such that ΠID = 95%); notice

that this ID varies with α, and is reported on the labels next

to the curve. For low values of α (e.g., α = 0.5), the 95% of

requests span over a almost the entire catalog (e.g., 90.3M out

of 100M videos): in turn, this yields to a continuous stream

of interests reaching the repository (η ≈ 1). As alpha grows,

the number of objects that make the 95% bulk of requests

is significantly smaller, making caching highly effective. For

large α however, the problem becomes trivial: e.g., at α = 2,

only 120MB of cache are required to cache the 12 files (out

of the 100M files catalog) responsible for 95% of the request,

so that η ≈ 0. The sharp transition phase happens between

α = 1.25 (the bulk of requests concerns about 50k files, or

500TB storage space) and α = 1.5 (234 files or about 2.4GB),

that we therefore consider as boundaries for the Zipf exponent

in the remainder of the evaluation.

B. Network-centric performance

Fig. 3 shows CCN performance at a glance, reporting

the chunk-level hit rate (top plots), the raw amount of data

chunks flowing in the network (middle plots) and the effort

to download the file corresponding to the 95%-th request

percentile (η95% for short, bottom plots). For each popularity

setting (α = 1.5 left, α = 1.25 right) labels in the plot

report the performance of the baseline scenario with LRU

caches, single repository and uniform requests. Bars report

the absolute difference with respect to the baseline, gathered

for different caching replacement (LRU vs RND), number of

repositories and strategy layer settings (single path for |R| = 1,

and closest vs all repositories when |R| = 4), and request

locality (uniform L → ∞ vs biased L = 2).
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Fig. 3. CCN performance at a glance: hit rate (top), raw data amount
(middle) and download effort (bottom). Labels report baseline performance
for LRU policy, under uniform requests directed to a single repository. Bars
show performance differences with respect to baseline.

As expected, absolute CCN performance varies significantly

with α: e.g., hit rate achieves 80% when α = 1.5 (52% at

α = 1.25), and the 95% most popular requests only travel

halfaway η95% = 0.51 toward the repository (is practically

downloaded from the repository η95% = 0.99). At the same

time, the relative trends across scenarios are consistent across

popularity settings: notice that when a simple RND replace-

ment is used instead of a LRU strategy, the hit rate reduces

by only a few percentage points; similarly, localizing content

requests only mildly ameliorate performance.

Above all, the strategy layer settings have the largest impact.

Consider first the case where interests are forwarded over

the shortest path (labeled as single for |R| = 1, closest for

|R| = 4). When multiple repositories are available, nodes

have on average a closer repository (w.r.t the single repository

case), hence exhibit a higher hit rate, and as a consequence the

amount of data reduces significantly. At the same time, notice

that the download effort (for the ID corresponding to 95%

of the cumulative requests) increases: despite paths are now

shorter, multiple independent diffusion trees rooted at each

repository now forms, which reduces the likelihood of interest

aggregation at each CCN router.

When the strategy layer forwards interests toward all repos-

itories in parallel, this clearly translates into a higher data

volume: yet, notice that the number of data packets only

slightly more than doubles, despite |R| = 4 paths are used

in parallel. Moreover, though the per-object download effort

decreases (which is due to the more aggressive strategy, and

beneficial from the user point of view), this happens to the

detriment of the per-chunk hit rate. This behavior is explained

through the increased cache contention, as the use of parallel

paths forces eviction on multiple CCN content stores.

C. User-centric performance

We now turn the attention to the performance that users may

expect when downloading objects corresponding to different

levels of popularity. Fig. 4 depicts the per-object effort ηID
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where ID represents the popularity rank, with lowest ID

objects being the most popular (considering α = 1.5 for the

sake of brevity). The top plot of Fig. 4 shows the joint impact

of the strategy layer and of the repository availability. We

report object whose ID falls in the range ID ∈ [10, 104],
as this limited support already spans the full range for the

ηID ∈ [0, 1] metric. Irrespectively of CCN settings, the top-10

objects gets always cached at the access CCN router (ηID = 0
for ID ≤ 10), while objects toward the tail of the catalog are

always served by the repository (ηID = 1 for ID ≥ 104).

Performance of ID ∈ [10, 104] (corrisponding to roughly 1/4

of the requests) are instead affected by the strategy layer.

Interestingly, the use of a single path in case of multiple

repositories (closest policy) actually increases the relative

effort (by about a factor of two for the first 100 elements). As

previously observed, this is due to multiple independent CCN

trees building up. Despite the absolute path length is shorter

than in the single repository case (recall from Fig. 3 that the

absolute number of messages reduces under the closest policy),

the interests travel relatively further than before, due to the

reduced level of interest aggregation in the PIT. When instead

all the shortest paths to all repositories are used in parallel, the

download effort reduces further compared to both the closest

and single policies – though the gain remains modest due to

the increased cache competition.

Finally, the impact of the network topology (torus vs

GEANT) and of the request spatial properties (uniform vs lo-

cally biased requests) is shown in the bottom plot of Fig. 4. For

the sake of illustration, we fix other settings to LRU caching

policies, popularity exponent α = 1.5, with |R| = 4 reposito-

ries served by a closest policy. First, notice that performance

is very similar under either topology, and that furthermore the

simple regular torus topology provides conservative results (for

the effort metric). As expected, spatially confined requests are

beneficial to CCN: intuitively, non-uniform requests reduce

caching contention and increase aggregation, yielding to a

higher caching efficiency.

IV. CONCLUSIONS

This paper assesses CCN efficiency in serving a YouTube-

like catalog by means of simulation. First, we show CCN

performance to be strongly dependent on the popularity model

of users requests, as even slight variation on the Zipf exponent

α can have a dramatic impact on the system performance. A

precise answer to whether CCN can keep its promise is thus

strongly related to this crucial scenario aspect.

Second, though the locality of user requests can simplify the

caching problem, it does however not suffice in making the

problem scalable – hence, the ability to build fast (multi Gbps)

and large (multi GB or TB) caches seems another necessary

piece to solve the CCN puzzle. Third, on the positive side,

our results show that a random replacement policy can be

used as a replacement for LRU with limited performance loss

– simplifying thus line speed requirement. Fourth, topology

of the CCN network seems to have the least impact, so that

investigation of simple topologies (e.g., regular torus) may

represent a good first approximation.

Fifth, the strategy layer has, by far, the largest impact on

CCN performance. Our results show that, in case the original

content is stored by multiple repositories, part of CCN appeal

may vanish if simple forwarding strategies are used. Indeed,

in case CCN forwards requests for data that is not locally

available toward the closest repository only, this reduces the

level of request aggregation at CCN routers, loosing one of the

main CCN advantages. In case CCN forwards requests toward

all repositories in parallel, this instead yields to an increased

competition in the CCN router caches, resulting in the eviction

of cached content from multiple paths, and reducing the overall

cache hit probability. As such, the design of more intelligent

CCN strategy layers, that either (i) exploit aggregation or at

least (ii) reduce the cache contention, remains an open point.
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