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Abstract—This work studies the impact of flow sampling on the
accuracy of behavioral traffic classification. More precisely, we
consider the case where the traffic classification engine is located
at different vantage points of the network. Usually, behavioral
classification is performed close to the user access network –
where all the traffic exchanged by an endpoint can be observed.
In this work instead we take into account the case of a classifier
placed deeper in the aggregation network – where, due to load
balancing or routing issues, only part of the traffic is generally
observed.

We use the Abacus behavioral classification engine as our case
study, as it has been shown to provide accurate classification
of P2P applications, by relying only on the count of packets
and bytes peers exchange during fixed-length time-windows. We
further consider multiple policies of flow sampling, that either
reflect real router forwarding table, or allow to assess parameter
impact under controlled settings.

An accurate measurement campaign shows that, provided
that the signature definition does not rely on absolute counters
of the traffic volume (e.g., which can be achieved by means
of normalization), even when signatures are computed over a
minority of the traffic (e.g., about 10%) the classification is still
reliable (e.g, accuracy exceeds 75%).

I. INTRODUCTION

One of the most promising traffic classification branches

is represented by the so called “behavioral” techniques, that

exploit only transport properties to identify application traf-

fic. Indeed, unlike Deep Packet Inspection (DPI) techniques,

behavioral classification does not require access to packet

payload, nor it relies on port numbers to take classification

decisions, but it rather exploits the communication pattern

among application endpoints in terms of flows, packets and

bytes exchanged. The interest in such kind of classification

algorithms is due mainly to their low computational require-

ments, given that they perform only lightweight operations,

as opposed for instance to DPI. In fact, as classification

engines need to operate in real-time and cope with the ever

increasing link capacity, low computational-cost is a desirable

property, especially considering that operators already adopt

packet sampling to deal with link-speed increase.

At the same time, the effect of sampling on the performance

of traffic classification techniques has rarely been considered

in the literature [2]–[7]. Moreover, while most previous works

consider the impact of packet sampling on classification accu-

racy, this work takes an orthogonal perspective considering the

issue of flow sampling, which, to the best of our knowledge,

has not been dealt with so far.

More precisely, by flow sampling we mean that depending

on the location of the vantage point where the classification

decisions are taken, possibly not all the traffic generated by an

endpoint can be observed. For instance, when the classification

engine is moved from the access (e.g., DSLAM) deeper into

the aggregation network (e.g., at the first or second IP router),

only part of an endpoint traffic is likely available in this new

position, for, due to routing issues, some packets may follow a

different path and be handled by other routers. In such a case,

even though observing only a subset of the whole endpoint

traffic, classification might still be achievable and accurate,

or, on the contrary, it might also drastically fail.

In this work, we build on previous effort and consider a

behavioral technique [8] that is nearly as accurate as state-

of-art payload-based algorithms [5] for P2P applications and,

furthermore, allows a fine-grained classification of individual

applications. The Abacus classifier counts the number of

packets and bytes exchanged by one endpoint with other

peers in fixed-time windows. From this data a signature is

derived which represents a normalized description of the peer

neighborhood: in other words, the classifier evaluates the

percentage of high (e.g., data transmission in multiple of chunk

size) and low (e.g., peer discovery and overlay maintenance)

contributors in the neighborhood of each peer.

We assume that an Abacus classifier, trained for unsampled

traffic (i.e., to be used at the edge of the network), is then

employed to classify a subset of the total traffic received by

an endpoint (i.e., it is deployed in the network core). We

apply two different policies to sample flows to be included

in the subset: a realistic one, that takes into account the

real router forwarding tables, and an idealized one, where

flows are sampled at random depending on the originating

subnet. This two-fold approach ensures realism of the results

on the one hand, while, on the other hand, it also allows to

perform controlled experiments to precisely gauge the impact

of sampling.

Our results show that, at least for the behavioral technique

under consideration, classification performance is satisfying

(i.e., accuracy decreases less than 20%) even when signatures

are built out of a small portion of the endpoint P2P traffic (i.e.,

sampled traffic is as low as 10%). Intuitively, this stems from

two joint observations. On the one hand, signature definition978-1-4244-9538-2/11/$26.00 c© 2011 IEEE



needs to avoid relying on absolute counters of traffic volume

(e.g., by means of normalization), so that flow sampling does

not necessarily translate in significant signature changes across

subsets. On the other hand, chances are that peers in the

subset are independently sampled: thus, whenever enough

peers are sampled, the resulting subset would contain both

short and long flows without any particular bias affecting their

breakdown. In such a case, each subnet still carries a similar

mixture of peers, thus providing the classifier with enough

information to correctly derive the neighborhood description

and accurately perform the classification.

II. RELATED WORK

While the traffic classification community has produced

a significant effort in the latest years, the impact of traffic

sampling on the classification accuracy is apparently a less

studied issue [2]–[7]. Moreover, most of these few works either

deal with aspects only partially related to packet sampling [4],

or only explore this issue very limitedly [2], [5]: thus the

closest related works are [3], [6], [7].

In [4], authors investigate how sampling methodology

influences the selection of both elephant and mice flows in the

training data set – so they address how training set sampling

selection may mitigate the class imbalance problem in learning

machines, rather than studying the impact of sampling due to

network operation.

In [2], where the size and direction of the first few packets

of a flow are considered, authors state that the accuracy of

their classification approach will degrade fairly quickly under

packet sampling, whereas it would work fine in the case of

flow sampling (i.e., when all packets of a flow are sampled).

Similarly, in [5] we present a technique based on the stochastic

inspection of packet payload, evaluating the randomness of

the source alphabet, which should not be affected by packet

sampling (apart from being applicable only to long flows).

However, neither [2] nor [5], carry out any actual experiments

to confirm these (technically sound) hypothesis.

The impact of packet sampling is experimentally addressed

only in [3], [6], [7]. Nevertheless, packet sampling only repre-

sent a very minor aspect of [6], [7], as the former investigates

the sampling effect on Reduced Error Pruning Tree (REPTree),

while [6] considers Naı̈ve Bayes techniques. Sapling is instead

systematically evaluated in [3], which explores the accuracy of

statistical classification techniques at flow level for increasing

sampling rates.

However, we point out that closest work to ours considers

the issue of packet sampling (e.g., which is used by ISPs to

reduce the load on network monitors) on the classification

accuracy. This work, instead, considers the orthogonal issue

of flow sampling (e.g due to IP routing or load balancing),

which, to the best of our knowledge, no work has dealt with

so far.

III. BEHAVIORAL CLASSIFICATION

This section provides a brief overview the Abacus classifier,

necessary to interpret the results of the experimental campaign

...

X

Y1

Fig. 1. High-level view of Abacus signature calculation.

(for further details concerning the technique we refer the

reader to [8]).

We illustrate the process of application-level Abacus signa-

ture computation from network traffic with the help of Fig. 1.

The main idea behind Abacus is that P2P applications can be

precisely discriminated by observing the relative breakdown

of peers traffic into short signaling vs long data flows. Let

us consider the traffic received by endpoint X , the target of

classification, in a fixed-length time-window ∆T . For the rest

of this work, we set ∆T = 5 s, though the technique works

well also with longer time-frames such as those needed by

NetFlow monitors [8].

First, the classifier counts the number of packets (and bytes)

that each peer Yi sends to X in this time frame (though, for

the sake of simplicity, in the description we consider only

packet-wise features). Then peers are divided into bins of

exponential growing size according to the number of packets

sent to peer X : for instance in the figure Y2 is accounted in the

first bin as he sent only one (likely probing) packet to X , while

Y5, Y4, Y1 belong to the fourth bin, having sent between 4 and

8 packets (e.g. a chunk transfer) to X . The resulting histogram

is normalized over the total number of peers, thus yielding a

probability mass function characterizing the composition of

the neighborhood of peer X : in the signature, signaling peers

end up in the first bins (lower number of packets) while data

transfer peers are represented by high order bins.

Notice that, as signatures are normalized, changes in the

raw traffic volume do not affect the signature definition (other

than for quantization effect). A similar procedure is carried

on using the byte volume of traffic exchanged, and the final

Abacus signature is the concatenation of these byte-wise and

packet-wise distributions of peers. Signatures are then used as

feature vector for a supervised machine learning algorithm,
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Fig. 2. Distribution of bytes across the IP address space, linear (solid) and
logarithmic (shaded area) scales.

namely Support Vector Machines (SVM), which provides the

classification outcome.

We assume that the Abacus classifier is trained on all the

endpoint traffic (details about the SVM training process are

available in [8]), but it will be applied to signatures gathered

over portions of the endpoint traffic only (so that there is

a mismatch between training and validation). Notice that an

Abacus classifier in the core has no way to know what portion

of the endpoint traffic is transiting on the path on which it is

deployed, so that the mismatch cannot be avoided when the

vantage points moves from the edge.

In our experiments we apply the Abacus classifier on a set of

traces related to six P2P applications, ranging from file-sharing

to VoIP and live-streaming services. Due to space constraints

we omit the details of the dataset, available in [8], and just

mention it to be representative of approximately 12 GBytes of

traffic.

IV. FLOW SAMPLING

In this section we present the results of our experimental

campaign. As our purpose is to quantify the classification

accuracy when only a portion of traffic is observed, we first (i)

study how application traffic spreads over the IP address space,

and (ii) by using RIB data from routing tables of a real core

Internet router, how the traffic might be split over different

paths in the network. Afterwards, we assess the change of the

Abacus signatures due to traffic sub-sampling, and how these

changes affect the overall classification performance.
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Fig. 3. Percentage of bytes seen by the different BGP peers.

A. Spatial distribution of application traffic

As a preliminary step we analyze how application traffic

is distributed in the IP address space, i.e. whether it spreads

over the whole range of IP addresses, so that no subnet is

more important than the other, or whether it is concentrated

in a few subnets whose observation may be fundamental for

the classification.

To gather a quick representation of the traffic distributions,

we partition the IP address space in 256 subnets with a

netmask/8 (i.e., we consider just the first byte of the IP

address) and accumulate the traffic received by each subnet in

terms of bytes. The resulting histograms for each application

are reported in Fig. 2, where on the x-axis we have the value

of the first byte of the IP address (which obviously ranges

from 0 to 255) and on the y-axis we have the number of bytes

received by such addresses. The grey-shaded areas refer to the

logarithmic scale reported on the left axis, so that we can see

all networks from which even a small amount of (signaling)

traffic is received, while the solid bars are reported in linear

scale, to highlight the subnets with which the bulk of (data)

traffic is exchanged.

Looking at the shaded areas, we see that applications known

for their aggressive peer discovery behavior, like PPLive or

Skype, exchange traffic with large portions of the IP address

space. Other applications such as TVAnts or SopCast (top two

plots) present instead large white gaps, meaning that some

address ranges are not part of the P2P overlay. On the other

hand, the few dark bars tell us that the bulk of traffic comes

mostly from a small number of subnets, around a dozen for

P2P-TV applications (top three plots) or even less for the

remaining graphs.

B. Real-life IP routing analysis

While the previous analysis yields a coarse-grain view of

traffic distribution across the IP space, it oversimplifies the

picture with respect to real IP routing. In fact, routes found

in routing tables of IP core routers and announced in BGP

updates are much more fine-grained. This means that traffic

can be split in far smaller subsets when it is actually forwarded



to its destination.

For this reason we used public available real-life routing

information [1] to precisely emulate how our target application

traffic is forwarded along different path by a router in the

Internet core. The RIS project [1] collects and makes public

available to researcher periodic BGP RIB dumps of several

core routers, which basically contain all the prefix announced

by other peer routers. We downloaded the RIB of two routers

located in London and Amsterdam, with respectively 19 and

84 peering routers, for April 4th 2008, i.e., the very day in

which the active traces of our dataset were captured. For lack

of space we only report results for the Amsterdam router,

similar consideration holds for London router as well.

In our analysis we assume that the IP router has to forward

the dataset traffic from its internal network to the outside

peering routers. Although we do not know the internal BGP

rules of the router, we can however estimate the routing table

by means of the standard criteria used by BGP routers: if the

same prefix is announced by two peer routers, we choose as

next hop for such destination the one announcing the shortest

AS path, or, in case of paths of the same length, the one with

the lowest peer ID.

Fig. 3 shows the percentage of the overall traffic which is

received by each peering router in terms of bytes and peers,

omitting the peers that receive negligible amount of traffic. It

can be seen that most of the traffic is carried by a few outgoing

links.

In particular for the Amsterdam router nearly 70% of traffic

is forwarded to a single peer (the London router, not shown

in the picture, splits the traffic in a somewhat more evenly

manner, though again three paths carry around the 80% of the

traffic).

It looks like even in real-life scenarios, when moving our

vantage point for classification towards the network core, it

is still possible to observe significant portions of the total

endpoint traffic on specific paths. In turn, we expect this

phenomenon to allow accurate classification, at least for some

paths. Besides, an important observation is that we also expect

the relevance of the classification to be directly proportional

to the amount of traffic observed: in other words, on link that

carry only a negligible portion of the endpoint traffic, providers

are unlikely to be interested in classifying such data, while

classification accuracy is required on links carrying the bulk

of traffic.

C. Impact of flow-sampling on Abacus signatures

In this section we assess the distortion that flow-sampling

induces in the Abacus signatures. Recall that signatures ba-

sically represent the breakdown of peers according to the

number of packets and bytes sent to the target endpoint: we

evaluate if, and how much, the shape of such distributions

changes when only a portion of the traffic is available to the

classifier.

To have more control on the sampling parameters, we

use an idealistic scenario rather then the real routing table.

We randomly sample the /8 subnets used to build Fig. 2
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Fig. 4. Mean signatures of each application for increasing values of flow
sampling.

with a decreasing probability k ∈ {1, 1/2, 1/4, 1/8}: only

flow pertaining to the sampled subnets are considered when

building the Abacus signature. Fig. 4 shows the average

Abacus signature (over all the time-windows) for all the

applications, with growing values of sampling rate which

directly correspond to fading colored bars. At first glance the

shape of the distributions seems to be only slightly affected

by sampling, especially when k < 1/8. Changes start to be

more evident for k = 1/8 (in particular BitTorrent and Skype

shapes are significantly altered by sampling) and signatures

appear more similar across applications.

A quantitative analysis of distortion is provided in Fig. 5.

Here we use the Bhattacharyya distance BD(p, q) which is a

measure of similarity between probability distributions p and

q. The BD distance takes values in the range [0, 1], with larger

values corresponding to bigger differences. The graph relates

to packet-wise signatures only, and report two different types

of curves. First, for each application X we show the intra-

application distance BD(X1, Xk), i.e. the distance between

the unsampled and sampled signatures. The distance increases

with the sampling rate, but values keep lower than 0.3, con-

sistently with the qualitative analysis of Fig. 4 showing only

small changes in the signatures. The top curve shows instead

the mean inter-application distance E[BC(Xk, Yk)], ∀X,Y ,

i.e., how much the applications differ between each other,

thus being an index of the separability of the classes. The

fact that the value keeps quite stable, and much larger than

BD(X1, Xk), suggests that differences among the applications

are well preserved even in harsh sampling conditions.
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D. Impact of flow-sampling on classification accuracy

We finally apply our classifier to the sampled traffic. First

we consider the idealistic case of randomly sampled subnets

that we have introduced in the former section. More in

details, we first train our classifier with 10% of the unsampled

signatures. The trained classifier is then applied to the test

set, which is made up of signatures derived from sampled

traffic. To gather robust results, for each flow-sampling rate

we generate 5 different test-sets, randomly selecting different

subnets to be sampled, and 10 different training set from the

unsampled traffic (experiments explore the full cross product

of the training and validation sets).

Fig. 6 reports the average classification accuracy computed

over all experiments (standard deviation is reported as error

bars) as a function of the sampling rate. Accuracy is expressed

both in terms of signatures and bytes, which is usually the

most significant metric from an network operator perspective.

Accuracy degrades gracefully with the increasing sampling

rate: indeed, notice that when as low as k = 1/4-th of the

traffic is sampled, the accuracy is reduced of about 10% (20%

at k = 1/8). As sampling rate increases, the standard deviation

increases as well, as different subnet sets may yield radically

opposed results. In fact, in the lucky cases where an important

subnet (i.e., in which a large number of either peers or bytes

fall) is selected, then the classifier is able to correctly classify

the traffic without difficulty; otherwise, classification fails.

Fig. 6 also reports results for the real-world scenario with

squared points for the first two BGP peering routers, receiving

respectively about the 70% and 10% of the traffic share (cfr.

Fig. 3). The points have as x-coordinate the value of sampling

probability that would sample approximately the same amount

of traffic observed by the router. Interestingly, while the byte

accuracy is in line with our reference scenario, the signature

accuracy behavior is odd (i.e., Peer 3 exceeding Peer 0), which

is rooted in the different mixture of traffic observed by the

two routers. Namely, Peers 0 handles the bulk of the traffic

and therefore the most of the data-transfer: hence, correctly

classifying a few heavy signatures has a great impact on
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of traffic observed.

the byte-accuracy. Conversely, Peer 3 handles 30% of the

peers that however generate less than 10% of the traffic share

(cfr. Fig. 3): hence, correct signature classification do not

necessarily translate into high byte-wise accuracy.

V. CONCLUSION

This paper studied the impact of flow-sampling on the

accuracy of behavioral classification for P2P traffic. This

important issue arises when the classifier is moved from the

network edge toward the core, so that only a portion of P2P

endpoints traffic can be observed.

Our study shows that the normalized Abacus signatures

degrade slowly under sampling: as a random selection of

subnets (hence, of peers) is unbiased with respect to the

application behavior, this makes Abacus classification robust

under this scenario – even in case of real routers as considered

in this work. More precisely, our results show an accuracy

drop of about 20% when only about the 10% of the subnets

is sampled. As part of our future work, we are interested in

exploring the impact of sampling further, investigating the joint

effect of flow-sampling (due to routing) and packet-sampling

(due to monitors).
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