
The impact of uTP on BitTorrent completion time

Claudio Testa and Dario Rossi

Telecom ParisTech, Paris, France, firstname.lastname@telecom-paristech.fr

Abstract—BitTorrent, one of the most widespread file sharing
P2P applications, recently introduced uTP, an application-level
congestion control protocol which aims to efficiently use the
available link capacity, while avoiding to interfere with the rest
of user traffic (e.g., Web, VoIP and gaming) sharing the same
access bottleneck.

Research on uTP has so far focused on the investigation of the
congestion control behavior on rather simple settings (i.e., single
bottleneck, few backlogged flows, etc.), that are fairly far from
the P2P settings in which the protocol is deployed. Moreover,
prior work typically addressed questions, such as fairness and
efficiency, that are natural from a congestion control context
perspective, but are not directly related with the performance of
the overall P2P system.

In this work, we refine the understanding of uTP, by gauging
its impact on the primary BitTorrent user-centric metric, namely
the torrent download time, by means of packet level simulation.
Results of our initial investigations show that: (i) in case uTP
clients fully substitute TCP clients, no performance difference
arise; (ii) in case of heterogeneous swarms, comprising peers
using uTP and TCP congestion control, completion time of uTP
peers can possibly benefit of lower uplink queuing delays, as
signaling traffic (e.g., chunk requests) are not slowed down by
long waits in the ADSL buffers.

I. INTRODUCTION

In the latest years, BitTorrent represented the closest syn-

onym to filesharing, before drops in the capacity and storage

costs witnessed a widespread of several filehosting servers

around the Internet. Yet, BitTorrent still represents the closest

synonym to peer-to-peer filesharing, with a very large ecosys-

tem consisting of hundreds of trackers and millions of concur-

rently active peers [1]. Recent changes in µTorrent, a popular

implementation of the BitTorrent protocol, include uTP [2], a

new congestion control paradigm for data transfer and, more

recently, the ability to perform sequential download, i.e., to

“start watching before [. . .] download completes, or simply

preview content before committing to a full download” [3].

These changes have refueled the interest of the scientific

community [1], [4]–[8] on the application, with a recent body

of work focusing on uTP [6]–[8] (while no work focused so far

on µTorrent streaming capabilities which have been released

on 19th April, 2011). The novel congestion control algorithm,

implemented at the application layer over an UDP framing, is

designed to fully exploit the access capacity while introducing

only a small amount of extra queuing delay on the ADSL

buffer. Indeed, as ADSL modems can store large quantities of

data (up to some seconds [7]), the use of TCP for transferring

large files can harm the performance of other interactive traffic

such as VoIP, gaming and Web browsing. Shortly, as TCP

congestion control is based on the inference of losses (via

duplicate acknowledgement or timer expiration), this entails

that TCP necessarily fills the access buffer, hence perturbing

the other traffic of the very same user, with consequently low

quality of service for interactive applications.

To solve this QoS issue, there are two general, orthogonal

means. On the one hand, we have active queue management

techniques, that are becoming commonplace in recent home

gateways [7], and can be used to prioritize user traffic. On the

other hand, we have distributed congestion control techniques,

such as the one proposed by uTP, that aim at realizing efficient

but low-priority transport services. The main aim of uTP is

perhaps better understood in BitTorrent words “The main

purpose of uTP is not to increase transfer speeds, it’s to fix the

problem of delay. [. . .] That said, the fact that uTP doesn’t add

significant delay also means that utilization (and speed) can

be increased.” [9]. Also, it is clearly understood that users will

be the ultimate judge of BitTorrent performance, as “unless

we can offer the same performance [of TCP], then people will

switch to a different BitTorrent client.” [2].

In this work, we dig precisely into this question, by per-

forming an initial but careful investigation of the primary

swarm performance metric from the user perspective, i.e., the

torrent completion time, via ns2 simulation, exploiting and

integrating the open-source BitTorrent ns2 module [5] with

our open-source uTP implementation for ns2 [8].

II. RELATED WORK

BitTorrent is not only a successful application, but also a

widely studied research topic [1], [4]–[8]. While early study

on BitTorrent focused on the evaluation of its performance by

means of fluid model [4], simulations studies [5] or analysis on

real swarms [1], a more recent research body focus on the uTP

protocol [6]–[8], and is thus closer to ours. At the same time,

we point out that while [6]–[8] all focus on uTP, none of the

above shares the same aim of this work. More precisely, [6],

address the queuing delay estimation by solving problems tied

to the clock drift. Authors in [7] study uTP in a local testbed,

employing different real ADSL modems. In [8] we instead

implement uTP in ns2, and then study the congestion control

protocol in simple settings (e.g., a couple of flows sharing

a bottleneck link), focusing especially on the fairness of the

transfer, but from individual flows perspective.

In this work, we instead argue that a more pertinent view,

at least from the user standpoint, is to consider the application

performance as a whole, irrespectively of the performance

of individual flows. Therefore, we focus on the torrent com-

pletion time, the primary user-centric performance metric in

BitTorrent systems, that to the best of our knowledge has been

Data
TCP

uTP

Control TCP

ADSL

modem

Application Node

Fig. 1. Synoptic of simulation model.

neglected so far. Due to space limitation, we refer the reader

to [10] or the above work for an overview of the uTP protocol.

III. METHODOLOGY AND SCENARIO

To carry out our study, we resort as previously stated to the

open-source implementations of BitTorrent [5] and uTP [8]

for ns2. Nevertheless some modifications were necessary in

order to successfully integrate both modules, which we shortly

summarize in the following with the help of Fig. 1.

As commonly assumed, we consider the bottleneck to be

represented by the access link, which is also one of the main

motivations of uTP. As access links technology, we consider

ADSL-like access with C = 1Mbps uplink capacity (homo-

geneous for the whole peer population) and 8 Mbps down link

capacity. Coherently with [7], unless otherwise stated, we set

the buffer size to B = 200 full-size packets (corresponding to

a few seconds given C). Access links also model propagation

delay, which is chosen uniformly at random in the interval

[1, 25] so that the average one way delay of the swarm is

about D = 25ms (i.e., as two access links are crossed in

the end-to-end path connecting any two peers), which is the

default value of uTP target delay [8]. Access nodes are then

interconnected by the Internet, that we model by means of

infinite capacity, null delay links connected through an (infinite

switching capacity) router, to which all ADSL modems are

interconnected in a star topology configuration.

We implement two kind of nodes, that model dif-

ferent application settings as far as the congestion pro-

tocol used for data transfer is concerned. We assume

that the latest application versions will by default ini-

tiate data transfers using uTP on their uplink, but that

they can accept incoming TCP data connections (i.e.,

equivalent to setting bt.transp_disposition=5 in

µTorrent); similarly, older versions initiate TCP trans-

fers, but accept incoming uTP connections anyway (i.e.,

bt.transp_disposition=10). We further model that,

irrespectively of their data transfer settings, applications will

use TCP for the exchange of control messages. Hence, a

different traffic mixture will possibly compete for ADSL

access link capacity and buffer space. Notice that, while nodes

are free to decide what congestion control flavor use for the

outbound connections, they have to comply to other peers

settings as far as inbound data connections are concerned.

We simulate a (mild) flash-crowd scenario, in which at time

t=0 the swarm is constituted by only one seed, and then 100

leechers join with exponentially distributed arrival times (mean

rate 0.1 Hz). During each simulation, we discard the first 50

completion samples that happen during the transient period

(more details later on), and consider only the subsequent 50

completion times. For each parameter settings, we repeat each

simulation 10 times, so that statistics represent 500 individual

torrent downloads per setting.

As far as the swarm population is concerned, we either

consider homogeneous swarms (i.e., all TCP or all uTP) or

heterogeneous swarms where the population is equally split,

on average, among uTP and TCP peers (and that we denote

in the following as 50-50). While we reckon that it would be

interesting to explore different TCP vs uTP ratios, due to space

limitation we believe this split ratio to be reasonable: while

µTorrent client is among the most popular clients, there is no

precise agreement on its popularity (e.g., µTorrent estimated

share varies between 15% in 2006 to 60% in 2008 [1]),

meaning that TCP versions are still around; moreover, as

population sets size are not biased, the analysis of the results

is simpler.

As far as the peer behavior is concerned, we again consider

two scenarios. A first, optimistic one, where peers never

leave the system after becoming seeds, and a second, more

realistic one, where newborn seeds stay in the system for

a random time. In this latter scenario, each time a peer

leaves, a new leecher joins the swarm, so that the swarm size

remains constant. Specifically, peers stay in the system after

becoming seeds for an exponentially distributed time, with

mean equal to half their download time (this choice roughly

models the BitTorrent netiquette, i.e., to continue seeding

until the uploaded data reaches 1.5 times the downloaded

amount). We point out that, due to space limitation, we avoid

reporting results for a worst-case scenario in which peers leave

immediately as soon as they become seeds, as the above two

scenarios already provide interesting insights.

IV. SIMULATION RESULTS

Simulation results are reported in Fig. 2. Top plots refer to

scenarios where seeds never leave the system, while bottom

plots to random stay scenarios. Taking a single run as an

example, plots on the left depict how the completion time

evolves during the simulation, ordered by peer completion rank

(dark gray background represents the discarded initial transient

period). If seeds stay forever, completion times shrink down

to a point in which leechers are close to fully exploit their

downlink capacity, which is no longer the case when seeds

stay only for a finite time.

Middle Fig. 2 plots report the completion time cumulative

distribution (CDF) for the different populations. If peers never

leave the system, no difference arises due to the congestion

control algorithm: intuitively, as there is no resource hotspot,

peers are able to download from many seeds at the same time,

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 25 50 75 100

C
o
m

p
le

ti
o
n
 t

im
e

[s
]

Peer completion rank

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
D

F
Completion time [s]

All TCP
50-50
All uTP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 25 50 75 100 125 150 175 200

 0 500 1000 1500 2000

C
C

D
F

Buffer occupancy [pkts]

Queuing delay [ms]

All TCP
50-50
All uTP

(a) New seeds stay indefinitely (never leave)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 25 50 75 100

C
o
m

p
le

ti
o
n
 t

im
e

[s
]

Peer completion rank

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
D

F

Completion time [s]

All TCP 50-50
All uTP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

 0 500 1000 1500 2000

C
C

D
F

Buffer occupancy [pkts]

Queuing delay [ms]

All TCP
50-50
All uTP

(b) New seeds leave, on average, after half completion time (random stay)

Fig. 2. Swarm performance for different seeds holding time (never leave vs random stay) and populations (homogeneous uTP vs homogeneous TCP vs
heterogeneous 50-50): completion time evolution and CDF, queue occupancy CCDF.

hence we do not expect congestion to play a major role in this

case. Conversely, when seeds leave the system and are replaced

by new leechers, resources become rare, translating into longer

completion times. Notice that completion time in random

stay scenarios is affected by the specific congestion control

mechanism adopted by peers in case of heterogeneous swarms

(while performance of homogeneous swarms are practically

the same).

Reasons why this happens can be better understood by look-

ing at the queue size complementary cumulative distribution

(CCDF) shown in the right Fig. 2 plots (gathered by sampling

all uplink queues at 10 Hz). Notice indeed that uplink queue

of uTP peers is very similar in both (a) and (b), as uTP

tries not to exceed a target delay: deviation from target are

due to TCP control connection sharing the same queue, and

latecomer advantage [8]. On the contrary, TCP queues can

grow long: in scenario (b), about 20% of the cases, queues

exceed 100 packets, corresponding to more than a second of

queuing delay considering full size packets (as reported in the

top x-axis for reference). In the 50-50 case, queuing delay

aggregates both uTP and TCP uplink buffers, resulting in an

intermediate average system queueing time (notice that in the

50-50 scenario, a further deviation from uTP target is due to

bursty uplink ACK traffic of TCP connections opened by other

peers in the swarm).

Interestingly, the completion time behavior changes if we

consider a heterogeneous swarm, as shown in the middle

plot of Fig. 2-(b). Investigating further, we find that uTP

peers have shorter download times in the 50-50 random-stay

scenario, as the uTP vs TCP breakdown of the completion

time CDF of Fig. 3-(a) testifies (while no difference arises

in the heterogeneous 50-50 never-leave scenario). This is a

counter-intuitive result, as in principle we would not expect

completion time to be tied to the congestion control used

to handle chunks upload: indeed, the completion time metric

relates to the download performance of a uTP peer P (i.e.,

a peer using uTP for its uplink), that rather depends on the

uplink performance of other uTP and TCP peers of the swarm

(i.e., peers that upload to P according to the protocol of their

choice).

We suspect this unexpected phenomenon to arise due to (i)

the decoupling of the data vs control connection, associated to

(ii) the very large size of ADSL buffers: while large buffers are

beneficial to backlogged data connections, they can conversely

harm BitTorrent signaling. Indeed, TCP control connection

competes with either uTP data traffic (that strive to keep a

low extra delay on the access buffer) or TCP data traffic (that

indiscriminately opens up the congestion window until loss

occur). As ADSL buffers are large, queuing delay of TCP

peers can grow up to seconds (Fig. 2): hence, this possibly

hampers the performance of TCP peers, whose control traffic is

significantly slowed down by competing chunk upload to other

peers and by ACK traffic of downloaded chunks. Conversely

the shorter queuing delay of uTP peers lead to more responsive

control connections, that opportunistically “steal” download

slots from TCP peers (whose request rate is, as we just saw,

slowed down due to self-induced congestion in the access

link), as they are faster in filling the request buffer of other

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
D

F

Completion time [s]

never
leave

random
stay

uTP
TCP

(a)

 100

 150

 200

 250

 50 100 150 200

C
o
m

p
le

ti
o
n
 t

im
e

[s
]

Buffer size [pkts]

TCP
uTP

(b)

Fig. 3. (a) Breakdown of completion time CDF according to the different
peer population in the heterogeneous 50-50 scenario, for different seed holding
times. (b) Swarm completion time (mean, 1st and 3rd quartiles) as a function
of the buffer size B for the 50-50 random-stay scenario, for different peer
population.

peers. Conversely, this phenomenon was not observed in case

of homogeneous TCP swarms, as all peers fairly competed

against each other.

To confirm this intuition, we carried out a set of experiments

varying the buffer size of the access links. Completion time

statistics (mean, 1st and 3rd quartile of the distribution) are

reported in Fig. 3-(b) for the 50-50 random-stay scenario, with

separate curves for uTP and TCP peers. According to [8],

uTP can be affected by the buffer size only whenever the

target queuing delay exceeds the buffer capacity, in which case

uTP becomes as aggressive as TCP and becomes a loss-driven

protocol. Fig. 3-(b) confirms this, in that whenever the buffer

size cannot sustain the target (e.g., B = 10ms corresponding

to a 12 ms full-payload equivalent delay lower than the 25 ms

target), uTP and TCP performance cannot be distinguished.

Conversely, uTP and TCP show an opposite behavior for

increasing buffer size: TCP data transfer will benefit of the

increasing buffer size, translating into slower signaling rates,

while uTP data transfers will limit the extra queueing delay,

whatever the buffer size may be (so that the completion time is

roughly unaltered when B>50). We point out that additional

dynamics may further come into play, tied to tit-for-tat and

peer selection, which we aim at addressing as future work.

V. CONCLUSION

This work studies the impact of congestion control policies

on the main BitTorrent performance metric, namely, the torrent

completion time. We perform simulation in ns2, integrating

the open-source implementations of the swarming protocol [5]

and of the new congestion control protocol [8]. We simulate

small size swarms consisting of 100 peers, in mild flash crowd

scenarios. Peers initiate data connections with either uTP or

TCP, but can accept any flavor of incoming connections.

Swarm population is either homogeneous (i.e., all new uTP or

all old TCP clients) or heterogeneous (i.e., half new and half

old clients). Newborn seeds either stay in the system forever,

or leave after a random time and are immediately replaced by

a new leecher.

Initial simulation results show an interesting and unexpected

behavior: namely, the download time at torrent completion can

be moderately affected by the congestion control preferences

on the uplink traffic direction. More precisely, in a hetero-

geneous peer population scenario where seeds leave after a

random time, we observed that, as the use of uTP practically

bounds the queuing delay, uTP can assist peers into faster

signaling as a side effect: in turn, this translates into uTP

peers opportunistically gaining download slots faster than TCP

peers, whose control traffic competes with a self-congested

access link. In other scenarios instead, no major difference

can be noticed between uTP and TCP.

Still, we point out that simulation scenarios are often

simpler than reality, where complex dynamics may yield to

different behaviors (at least according to numerous posts [11],

the latest of which dating to October 2010 at time of writing,

µTorrent users seldom complain about unstable uTP per-

formance). Hence, results presented in this work should be

interpreted with care, as scenarios including heterogeneity in

the access capacity and background traffic, should be taken

into account as well.

Finally, while we believe open-source ns2 implementations

of BitTorrent and uTP to be extremely valuable for the research

community, we also believe simulation not to be an entirely

faithful representation of the real world: e.g., [5] does not

implement BitTorrent anti-snubbing and end-game algorithms,

while [8] does only implement the first draft specification,

using furthermore a TCP framing, with therefore a different

overhead than the actual uTP implementation. Therefore,

another direction we aim at pursuing in the following is

to perform PlanetLab experiments, analogous to the ones

reported in this paper, to fully discard the hypothesis that the

outlined phenomena arise due to simulation artifacts.

REFERENCES

[1] C. Zhang, P. Dhungel, D. Wu, and K. Ross, “Unraveling the bittorrent
ecosystem,” IEEE Transactions on Parallel and Distributed Systems

(TPDS), no. 99, 2011.
[2] S. Morris. (2008, Dec) µTorrent release 1.9 alpha 13485. http://forum.

utorrent.com/viewtopic.php?pid=379206#p379206.
[3] (2011, April) New µTorrent 3.0 Beta – Streaming, Sending, Remote

Access and More. http://blog.bittorrent.com/2011/04/19/new-ending-
remote-access-and-more/.

[4] D. Qiu and R. Srikant, “Modeling and performance analysis of
BitTorrent-like peer-to-peer networks,” ACM SIGCOMM Comp. Comm.

Rev., vol. 34, no. 4, pp. 367–378, 2004.
[5] K. Eger, T. Hoßfeld, A. Binzenhofer, and G. Kunzmann, “Efficient

simulation of large-scale p2p networks: packet-level vs. flow-level
simulations,” in ACM UPGRADE-CN, Monterey, CA, Jun 2007.

[6] B. Cohen and A. Norberg, “Correcting for clock drift in uTP and
LEDBAT,” in Invited talk at 9th USENIX International Workshop on

Peer-to-Peer Systems (IPTPS 2010), San Jose, CA, Apr 2010.
[7] J. Schneider, J. Wagner, R. Winter, and H. Kolbe, “Out of my Way

– Evaluating Low Extra Delay Background Transport in an ADSL
Acciess Network,” in 22nd International Teletraffic Congress (ITC22),
Amsterdam, The Netherlands, Sep 2010.

[8] D. Rossi, C. Testa, S. Valenti, and L. Muscariello, “LEDBAT: the
new BitTorrent congestion control protocol,” in 19th IEEE International

Conference on Computer Communications and Networks (ICCCN 2010),
Zurich, Switzerland, Aug 2010.

[9] A. Norberg. (2010, May) Dev. comment on uTP main purpose. http:
//forum.utorrent.com/viewtopic.php?pid=488896#p488896.

[10] S. Shalunov, “Low Extra Delay Background Transport (LEDBAT),”
IETF Draft, Mar 2010.

[11] http://forum.utorrent.com/viewforum.php?id=11.

