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Abstract—Since the early days of the Internet, network traffic
monitoring has always played a strategic role in understanding
and characterize users’ activities. In this paper, we present our
experience in engineering and deploying Tstat, an open source
passive monitoring tool that has been developed in the past ten
years. Started as a scalable tool to continuously monitor packets
that flow on a link, Tstat has evolved into a complex application
that gives to network researchers and operators the possibility to
derive extended and complex measurements thanks to advanced
traffic classifiers.

After discussing Tstat capabilities and internal design, we
present some examples of measurements collected deploying
Tstat at the edge of several ISP networks in the past years.
While other works report a continuous decline of P2P traffic
with Streaming and File Hosting services rapidly increasing in
popularity, the results presented in this paper picture a different
scenario. First, P2P decline has stopped and in the last months
of 2010 there is a counter tendency to increase P2P traffic over
UDP, so that the common belief that UDP traffic is negligible
is not true anymore. Furthermore, Streaming and File Hosting
applications have either stabilized or are decreasing their traffic
share. We then discuss the scalability issues that software based
tools have to cope with when deployed in real networks, showing
the importance of properly identifying bottlenecks.

I. INTRODUCTION

Since the early days of the Internet, network traffic moni-

toring has always played a strategic role in understanding and

characterize users’ activities. Nowadays, with the increased

complexity of the Internet infrastructure, the applications and

the services, this role has become more crucial than ever. Over

the years, a number of methodologies and tools have been

engineered to assist the daily routines of traffic monitoring

and diagnosis and to understand the network performance and

users’ behavior [1].

To analyze a system, researchers can follow experimental

science principles and devise controlled experiments to induce

and measure cause-effect relationships, or, observational sci-

ence principles and to study the unperturbed system. In the

specific field of network traffic measurement, the above two

disciplines are referred to as active and passive measurements,

respectively. The active approach aims at interfering with the

network to induce a measurable effect, which is the goal of the

measurement itself. Active approaches generate traffic, e.g, by

injecting specifically crafted probe packets or alter the network

state, e.g., by enforcing artificial packet loss. A number of

This work has been supported by the European Commission through NAPA-
WINE Project (Network-Aware P2P-TV Application over Wise Network), ICT
Call 1 FP7-ICT-2007-1.

Internet monitoring tools are based on active probing, ranging

from simple operation management or network tomography

via ping or traceroute, to more complex delay and capac-

ity estimation via capprobe or pathchar. Finally, large and

controlled testbeds can be easily setup using tools like netem

or dummynet. For the passive approach pure observations are

performed by means of dedicated tools, named sniffers by

the Internet metrology community, that simply observe and

analyze the traffic that flows on links. Several passive mea-

surement tools are available. Some tools, such as tcpdump or

Wireshark, are designed to let researchers interactively analyze

the captured packets. Other tools are instead automated, so that

the human interaction is minimized; examples are the flow-

level monitoring tool NetFlow, intrusion detection system like

Snort or Bro, and the traffic classification tool CoralReef. A

comprehensive list of both active and passive tools can be

found in [1].

Tstat is an example of automated tool for passive mon-

itoring. It has been developed by the networking research

group at Politecnico di Torino since 2000 [2]. Tstat offers

live and scalable traffic monitoring up to Gb/s using off-the-

shelf hardware. It implements traffic classification capabilities,

including advanced behavioral classifiers [3], while offering

at the same time performance characterization capabilities of

both network usage and users’ activities [4]. After more than

ten years of development, Tstat has become a versatile and

scalable application, used by several researchers and network

operators worldwide. In this paper, we report our experience

with Tstat development and use. We illustrate as a case study

the traffic evolution as observed during the last year at different

vantage points in Europe, and discuss some issues about the

feasibility of Internet traffic monitoring with common PCs that

can help researchers to avoid common pitfalls that we have

faced in the past.

II. TSTAT OVERVIEW

Tstat started as evolution of tcptrace[5], which was devel-

oped to track and analyze individual TCP flows, offering de-

tailed statistics. Tstat initial design objective was to automate

the collection of TCP statistics of traffic aggregate, adding

real time traffic monitoring features. Over the years, Tstat

evolved into a more complex tool offering rich statistics and

functionalities. Developed in ANSI C for efficiency purposes,

Tstat is today an Open Source tool that allows sophisticated

multi-Gigabit per second traffic analysis to be run live us-

ing common hardware. Tstat design is highly flexible, with
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Fig. 1. Tstat monitoring probe setup (a) and analysis workflow (b).

several plugin modules offering different capabilities that are

briefly described in the following. In addition, plugins can be

activated and deactivated on the fly, without interrupting the

monitoring. Being a passive tool, live monitoring of Internet

links, in which all flowing packets are observed, is the typical

usage scenario. Fig. 1(a) sketches the common setup for

a probe running Tstat: on the left there is the network to

monitor, e.g., a campus network. It is connected to the Internet

through an access link that carries all packets originated from

and destined to terminals inside the monitored network. The

Tstat probe observes the packets and extracts the desired

information. Note that this scenario is common to a wide set of

passive monitoring tools: therefore, the problems faced when

designing Tstat are common to other tools as well.

A. Monitored objects

The basic objects that passive monitoring tools considers

are the IP packets that are transmitted on the monitored

link. Flows are then typically defined according to

some rules to group all packets identified by the same

flowID and that have been observed in a given time

interval. A common choice is to consider flowID =
(ipProtoType, ipSrcAddr, srcPort, ipDstAddr, dstPort),
so that TCP and UDP flows are considered. For example, in

case of TCP, the start of a new flow is commonly identified

when the TCP three-way handshake is observed; similarly,

its end is triggered when either the proper TCP connection

tear-down is seen, or no packets have been observed for some

time. Similarly, in case of UDP, a new flow is identified when

the first packet is observed, and it is ended after an idle time.

As Internet conversations are generally bidirectional, the

two opposite unidirectional flows (i.e., having symmetric

source and destination addresses and ports) are then typically

grouped and tracked as connections. This allows to gather

separate statistics for client-to-server and server-to-client flow,

e.g., the size of HTTP client requests and server replies.

Furthermore, the origin of information can be distinguished,

so that it is possible to separate local hosts from remote hosts

in the big Internet. As depicted in Fig. 1(a), traffic is then

organized in four classes:

• incoming traffic: the source is remote and the destination

is local;

• outgoing traffic: the source is local and the destination is

remote;

• local traffic: both source and destination are local;

• external traffic: both source and destination are remote.

This classification allows to separately collect statistics about

incoming and outgoing traffic; for example, one could be

interested in knowing how much incoming traffic is due to

YouTube, and how many users access Facebook from the mon-

itored network. The local and external cases should normally

not be considered but can be present in some scenarios.

At packet, flow and application layers, a large set of statis-

tics can be defined and possibly customized at the user’s will.

In case of Tstat, several statistics are already available, and

they can be easily customized and improved being Tstat Open

Source. A detailed description of all available measurement

indexes can be found in [2] and [7].

B. Workflow analysis

As far as the analysis process is concerned, each observed

packet is handed over to each active plugin, as illustrated in

Fig. 1(b). Following the Internet naming standard and going up

in the protocol stack, layer-2 (L2) frame decapsulation is first

done. Then, the network-layer (L3) header is processed. Given

the datagram service offered by IP networks, at L3 only per-

packet statistics, such as bitrate, packet length, are possible.

Going up to the transport-layer (L4) analysis, a set of com-

mon statistics for both TCP and UDP flows are maintained,

e.g., packet and byte counters, round trip time (RTT) and

throughput of the data download.

At the application-layer (L7), the main goal of a monitoring

tool is to perform traffic classification task, that is to identify

the application that generated the traffic. As traffic classifica-

tion is known to be prone to fallacies, several approaches have

been studied in the literature [6], [8]. Each tool has its peculiar-

ities. In the case of Tstat, three different engines are available,

each relying on different technologies. They are designed to

work even when the complete packet payload is not available,

that is a common situation in live networks monitoring, since,

usually, only a limited portion of each packet is exposed to

the sniffer due to privacy reasons. Tstat implements a DPI

technology similar to the one adopted in tools like l7filter and

OpenDPI. In addition to what done in those tools, Tstat offers

a richer set of statistics that complement the pure classification

purpose making it more flexible than pure classification tools

as the ones earlier mentioned. Other commercial tools like

ntop and peakflow offer not only classification capabilities but

complete solutions for traffic monitoring, anomaly detection

and security. Designed to work on operative networks, they

rely on NetFlow/sFlow technology as input, i.e., they do

not analyze packet traces, but data records with flow level

statistics. Typically, their deployment is highly invasive, i.e.,

several analyzers have to be deployed in strategic points of the

network. Tstat instead is an Open Source software designed to

be installed on common hardware at the edge of the network

where packet level traces are analyzed.

In particular, the simplest classification engine offered by

Tstat is Pure Deep Packet Inspection (PDPI). It uniquely

identifies applications by matching a signature in the appli-

cation payload. All the application signatures are collected in



3

a dictionary, defining a set of classification rules, and are then

checked against the current packet payload until either a match

is found, or all the signatures have been tested. In the first

case, the packet/flow is associated to the matching application,

while in the second case it is labeled as “unknown”. Signatures

cover a large set of applications, ranging from standard email

protocols to Peer-to-Peer applications, like BitTorrent, eMule,

Gnutella, PPLive, and Sopcast. Extending and updating the

signatures is a key issue with PDPI, as we will discuss later.

The second engine, named Finite State Machine Deep

Packet Inspection (FSMDPI), inspects more than one packet

of a flow. Finite State Machines (FSM) are used to verify

that message exchanges are conform to the protocol standard;

a specific sequence of matching rules have to be triggered to

have a positive match. For example, if the first packet contains

GET http:// and the response carries HTTP/1.0 OK, the

flow can be considered as HTTP. Using this approach, more

complex signatures can be defined, allowing to identify web

based applications like YouTube, Vimeo, Facebook, Flickr, or

chat services like MSN, XMPP/Jabber, Yahoo. Finally, Voice

over IP phone (VoIP) calls based on RTP/RTCP are identified

using FSMDPI as well.

To cope with applications that leverage on encryption

mechanisms which make any DPI classifier useless, Tstat

implements a Behavioral classifier (BC) engine that exploits

statistical properties of traffic to distinguish among appli-

cations. For example, packet size or inter arrival time in

flows carry information about the application generating the

content, so that VoIP flows exhibits different characteristics

with respect to data download flows. Using this approach, Tstat

identifies encrypted traffic like the one generated by Skype and

Obfuscated P2P-file-sharing of BitTorrent and eMule [3].

In Section III we present some results that exploit the traffic

classification capabilities of Tstat. While the performance

and accuracy of the classifier are out of the scope of this

paper, overall, they have been found to “outperform [other]

signature based tools used in the literature” when compared

by independent researchers [9].

C. Input data

Software-based monitoring tools like Tstat are designed

to work in real-time when installed in operational networks.

The software tool runs on a “probe”, i.e., a dedicated PC

that “sniffs” traffic flowing on an operative link, as shown in

Fig. 1(a). The libpcap library is the de-facto standard Appli-

cation Programming Interface (API) to capture packets from

standard Ethernet linecards under several Operating Systems.

Dedicated hi-end capture devices such as Endace DAG or

AITIA S1GED cards are also available on the market1. They

offer hardware packet monitoring solutions that offload the

CPU guaranteeing higher performance than software based

solutions. Tstat supports both standard sniffing based on

libpcap, and hardware solutions as the ones mentioned earlier.

Furthermore, Tstat can be also compiled as a “library” to

allow an easy integration with already existing tools such

as those typically deployed by an ISP which already has a

1http://www.endace.com, http://www.aitia.ai

monitoring solution. In the latter case, the ISP is free to decide

what packets should be processed by Tstatto cope with privacy

and anonymization issues. In our experience, this approach

has been very successful to facilitate the integration of Tstat

with the monitoring tools of several ISPs around Europe and

with other traffic analysis tools developed by the research

community.

Besides live traffic analysis, monitoring tools are also com-

monly adopted to process packet-level traces that have been

previously collected. In this case, the tool can be used to

inspect specific traffic for post-mortem analysis, or to develop

more complex statistical analysis for advanced performance

evaluation, or to double check the accuracy of any new index

that is being developed. Since several trace file formats are

available on the market, a variety of file formats should be

supported, such as pcap, erf, etherpeek, snoop to name a few.

Besides supporting already a large set of trace input file format,

Tstat allows to easy integrate new formats thanks to its open

and flexible design.

D. Output statistics

Each monitoring tool offers a set of output statistics that

are strictly bound to the goal of the tool itself. For example,

intrusion detection systems like Snort or Bro output the list

of triggered alarms and violations, while traffic classification

tools like Tie or CoralReef report statistics about application

traffic shares. Considering Tstat, statistics are available with

different granularities: per-packet, per-flow, and aggregated. At

the finest level of granularity, packet traces can be dumped into

trace files for further offline processing. This output format is

extremely valuable when coupled with Tstat classification ca-

pabilities: indeed, packets generated by different applications

can be dumped to different files. For example, it is possible to

instruct Tstat to only dump packets generated by Skype and

BitTorrent applications.

At an intermediate level of granularity, Flow-level logs are

text files providing detailed information for each monitored

flow. A log file is arranged as a simple table where each

column is associated to a specific information and each line

reports the two unidirectional flows of a connection. Several

flow-level logs are available, e.g., the log of all UDP flows, or

the log of all VoIP calls. The log information is a summary of

the connection properties. For example, the starting time of the

VoIP call, its duration, the number of suffered packet losses,

the jitter are all valuable metrics that allow to monitor the

VoIP quality of service. Flow-level logs use much less space

than the original packet-level traces, and can be collected for

much longer periods of time.

At an even higher level of granularity, Tstat gathers statistics

about flows aggregates. Two formats are available in this case.

Histograms are empirical frequency distributions of collected

statistics over a set of flows. For example, the distribution of

the VoIP call duration is automatically computed by consid-

ering all VoIP flows that were observed during each 5 minute

time interval. To overcome the problem of storage space

explosion of packet-traces, flow-level logs and histograms over

time, the second available format is represented by Round
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TABLE I
PROBES CHARACTERISTICS

Location Users Technology Type

Polish ISP 10k ADSL Home
Hungarian ISP 4k ADSL Home

Italian ISP 5k ADSL Home
Italian ISP 15k FTTH Home

Italian Campus 10k LAN and WLAN Campus

Robin Database (RRD) [10] It allows to build a database that

spans over several years by limiting the amount of disk space.

RRD handles historical data with different granularities: newer

samples are stored with higher frequencies, while older data

are averaged in coarser time scales. This dramatically reduces

the requirements in terms of disk space (a priori configurable)

and, thanks to the tools provided by the RRD technology, it

is possible to visually inspect the results. For example, RRD

data collected by a Tstat probe can be queried in real time

using a simple web interface [2]. Results presented in Sec.III

are obtained from the corresponding RRD data.

III. TRAFFIC TRENDS FROM DIFFERENT VANTAGE POINTS

After having presented the main Tstat features and char-

acteristics, we now show Tstat capabilities through a few

results and discuss some conclusions we drawn from our long

experience in using it.

We have been collecting measurement data since 2005 in

collaboration with several ISPs. A Linux-based Tstat probe

has been installed and properly configured in different Points-

of-Presence (PoPs). The results presented in this work refer

to five European PoPs and characterize 20 months of traffic

collected from May 2009 to Dec 2010.

A. Probe description

The main characteristics of the 5 probes are summarized in

Tab. I, which reports the PoP location, the approximate number

of aggregated users, the access technology and the type of

customers distinguishing between Home or Campus users. As

it can be observed, the set of probes is very heterogeneous: it

includes Home users in three different countries, with ADSL

or LAN and WLAN access technologies. Depending on the

type of contract with the ISP and on the quality of the physical

medium, ADSL technology offers users different bitrates,

ranging from 2 to 20 Mb/s downstream and up to 1024 kb/s

upstream. Fiber to the Home (FTTH) customers are offered

10Mb/s full duplex Ethernet connectivity, while Campus users

are connected to a 10Gb/s based Campus network using either

100 Mb/s Ethernet, or IEEE 802.11a/b/g WiFi access points.

The Campus network is connected to the Internet via a single

1 Gb/s link and a firewall is present to enforce strict policies,

to block P2P traffic (unless obfuscated), and to grant access

to only official servers inside the campus.

Probes were upgraded several times to update the Tstat

version and to include advanced features, so as to enhance

traffic classification accuracy and augment the number of

protocol signatures. All probes are configured to continuously

collect RRD information.

TABLE II
AVERAGE TRENDS OF THE TWO SEMESTER IN 2010.

P2P HTTP Stream. File Hosting

Localtion Jan/Jun Jul/Dec Jan/Jun Jul/Dec Jan/Jun Jul/Dec

Pol. ISP -0.81 0.78 0.47 0.57 0.73 -1.06
Hun. ISP -0.62 1.98 0.72 0.04 0.45 -0.53
Ita. ISP ADSL -1.1 0.28 0.78 0.06 0.4 0.01
Ita. ISP FTTP -1.3 0.59 0.67 0.03 0.08 0.01

B. Traffic share and trends

We first present results covering from May 1st, 2009 to

Dec 22nd, 2010 period. Figure 2 shows the traffic breakdown

for incoming traffic, i.e., traffic received by customers. The

applications generating the largest amount of traffic are high-

lighted using different colors. Gaps in the figures correspond

to outage periods of the probes. Over time, we enhanced the

classification portfolio of Tstat by adding both PDPI/FSMDPI

and Behavioural rules. For example, since June 2009 we have

been collecting statistics about both Streaming Applications,

such as YouTube, Vimeo, Google video and other flash-based

streaming services, and File Hosting Web based services like

RapidShare or MegaUpload that allow users to share large

files. Light and dark pink colors highlight them in the plots.

Double checked in the Campus network first, we then deployed

these capabilities into other probes. Similarly, since December

2009 the BitTorrent obfuscated traffic (plotted in light green)

is correctly identified by Tstat, and the more recent BitTorrent

UDP based data transport protocol named uTP [11] is correctly

classified since July 2010 (dark red). This latter classifier was

developed while investigating the cause of the sudden increase

of UDP traffic share that is clearly visible in the Hungarian

vantage points during February 2010. This is an example of

the usage of Tstat to effectively support traffic monitoring.

Several considerations can be derived from the presented

results.

• Before the uTP protocol was adopted by BitTorrent, the

volume of UDP traffic was marginal in all vantage points

but in the Italian ISP. This is due to this ISP offering

Video on Demand (VoD) services over UDP that makes the

volume of VoD UDP traffic in this network about 10% of

the total. Customers of the same operator are offered native

VoIP service using standard RTP/RTCP protocols over UDP.

Still, the volume of traffic due to VoIP is almost negligible,

accounting for less than 2% of total traffic (in dark purple

color in the figure). Nowadays, UDP traffic can top 30% of

total volume, depending on the popularity of BitTorrent-uTP

or VoD applications. Therefore, the widely popular statement

that UDP traffic is negligible does not hold anymore.

• Applications’ usage is very different at different places.

For example, in Poland the fraction of HTTP traffic is predom-

inant, with more than 60% of traffic due to several applications

adopting HTTP protocol. In both the Italian ISP PoPs, instead,

Peer-to-Peer (P2P) applications amount to more than 50% of

traffic, with eMule clearly being preferred over BitTorrent. In

Hungary, on the contrary, BitTorrent is more popular (with a

traffic share above 20%), while an almost negligible amount

of traffic that is due to eMule. Finally, note that in the Italian

Campus network the fraction of P2P traffic is marginal being
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Fig. 2. Comparison of traffic as observed on 5 different traffic probes. Gaps in the data were due to temporary outages of the probes.

the firewall very effective in blocking such traffic.

• Some long-term trends are clearly visible. For example,

until July 2010, P2P traffic share is generally decreasing,

while Streaming and File Hosting applications are gaining

popularity. More precisely, Tab. II reports the average per

month variation of the traffic share. Specifically, we compute

the linear increase/decrease of traffic during each month, and

then we average the results over the first and second six

months of 2010 separately. We do not report results for the

Campus network since P2P traffic is blocked, and this biases

results. Interestingly, in the first semester data confirm the

trends reported in [12] where a decrease of P2P traffic was

noticed, while both File Hosting and Video Streaming usage

were increasing. During the second semester, we observe an

unexpected change in this trend: from June 2010, P2P traffic

starts increasing while File Hosting traffic is either stable or

decreasing. Further investigations revealed that this might be

related to changes in the policies of RapidShare [14], the most

popular File Hosting service in these countries. In particular,

RapidShare started enforcing more limitation to not-paying

customer to incentive them to subscribe to their service. This

caused users to switch back to P2P content download. The

Italian probes instead are not affected by this change since

RapidShare is not popular in Italy. Overall, these indexes

are a clear indication of very fertile and dynamic scenarios

that call for continuous and persistent traffic monitoring and

classification.

• While the above mentioned changes in traffic shares are

typically slow, sudden changes are possible due to changes

in the application. For example, as already mentioned, the

popular µtorrent, the official BitTorrent client application, was

updated during February 2010 to use by default the uTP

transport protocol instead of TCP. Correspondingly, there is

an increase of UDP traffic clearly visible in some probes.

• Residential probes have stable shares over time, even if

trends are present. Instead, in the Campus network the traffic

share changes over time, so that a weekly pattern is clearly

visible (see also the figure and related comments in the next

section). Indeed, during the weekend, few users are present in

the campus and little traffic flows on the link.

• Obfuscated traffic for P2P applications is not very

common in the monitored probes. We double checked that this
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Fig. 3. Total link bitrate, number of flows and maximum CPU utilization
during a typical week.

is not a Tstat classification problem (i.e., Tstat not correctly

identifying obfuscated P2P traffic). Consider a host a with IP

address IPa running BitTorrent on Porta. Since the applica-

tion uses the same Porta to receive both plain and obfuscated

connections, we count the number of connections going to

(IPa, Porta) and see how many of those are not labeled

as BitTorrent, i.e., neither plain BitTorrent, nor obfuscated

BitTorrent. Those are possibly BitTorrent connections not

correctly classified by Tstat. We consider all hosts that are

running BitTorrent in a 2 hour long trace on January 21st

of 2010 in Poland. Results show that less than 0.5% of

flows/bytes are not classified as BitTorrent (those are called

“false negatives” using classification terminology). Similarly,

we computed the percentage of flows that are classified as

BitTorrent obfuscated, but going to some host which is not

likely to run BitTorrent on that port. They account for less

than 0.01% of flows/bytes (those are called “false positives”

using classification terminology). Similar results are obtained

considering eMule. This shows that Tstat obfuscated classifi-

cation engine is very reliable.

In conclusion, the presented results highlight the importance

of constantly monitoring the network with a flexible tool that

has to be constantly upgraded and enhanced to follow its

changes.

IV. SCALABILITY ISSUE OF SOFTWARE BASED

MONITORING TOOLS

When implementing a live monitoring tool, the knowledge

of the maximum sustainable load that the probe can handle

is one the most critical issues that must be faced. Indeed, as

seen in the previous section, Internet traffic changes widely

over both time and space. In a finer timescale, traffic is known

to exhibit even larger variability considering both the packet

and flow levels. For example, packet-level burstiness can stress

the sniffing hardware so that packet bursts can arrive at very

high speed. Packet capturing, filtering and timestamping are

then critical, especially if implemented in software. Similarly,

bursts of new flows can stress the per-flow operations, so that

memory management becomes typically a bottleneck.

While Tstat is as an example of advanced traffic monitoring

tool, most of the operations it handles are common to any

flow-level sniffer and monitoring tool. Indeed, similar data

structures must be used to store basic per-flow information

such as flow identifier, packets and bytes counters, timestamp

and the classification status. Notice that flow structures must

be accessed and updated for each packet: hence, efficient

data structures like hash-tables must be considered, where

collisions are minimized and eventually handled using chain-

ing. Further optimizations of memory management are also

needed; freed structures should be manually handled as reuse

lists by a garbage collector, so as to avoid generic and

expensive garbage collection routines to kick-in and slow

down the main analysis operations.

In [13] we extensively analyzed the computational com-

plexity of the Tstat analysis workflow, showing that even with

off-the-shelf hardware it is possible to run advanced analysis

techniques on several Gb/s worth of traffic in real-time.

To provide some examples of the typical workload that

Tstat has to support, and to highlight some critical points

in the design of a flow-sniffer, Fig.3 shows the evolution a

one week long period of time of the total link bitrate (gray

line), number of tracked flows (black line) and maximum CPU

utilization (dotted line), i.e., the total time spent by the CPU in

running Tstat, including both kernel and user space CPU time.

Measurements refer to a time window of 5 minutes. Results for

the Italian ISP FTTH and Italian Campus probes are reported

on the top and bottom plots, respectively; results from other

probes are not reported for the sake of brevity.

Considering the total link bitrate, the two probes handle

approximately the same amount of traffic, which tops to nearly

500Mb/s at the peaks. Notice that the peak-hour occurs at

different times, reflecting the different user habits of Home

and Campus users. The number of active flows is also very

different, with the Campus probe having to handle a per-flow

load which is about two times higher. This is due to the

different traffic mix generated by Campus users, as previously

shown in Fig. 2. Therefore, hash table sizes must be correctly

tuned to support the various values of the load.

Consider now CPU load curves. We observe a very dif-

ferent behavior: the Italian ISP probe shows a very low CPU

utilization, which is not correlated with the traffic load pattern.

On the contrary, the Campus maximum CPU utilization is

always above 30%, and it tops 100% during sustained traffic

load. Investigating further, we pinpointed this to be due to the

packet capturing input module, which is based on a common

Gigabit Ethernet linecard in the Campus probe, while the

Italian ISP probe relies on a dedicated Endace linecard. Based
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on our experience indeed, the major bottleneck is due to

the linecard-to-memory communications, which can overload

CPU by generating a large number of Interrupt Requests (IRQ)

per second, i.e., one for each received packet. Dedicated traffic

capturing devices solve this problem by implementing times-

tamping functionalities and Direct Memory Access (DMA)

based transfers of packet batches. The CPU utilization figures

of the other probes, not shown in the paper due to lack of

space, confirm this. All ISP probes are indeed equipped by

dedicated hardware capturing linecards so that the maximum

CPU utilization remains very limited even if they have to

handle a large volume of traffic, topping to about 1.5Gb/s.

To sum up, with common hardware it is possible to monitor

several Gb/s volumes of traffic in real time, provided the

packet capturing is performed with efficient hardware that

offload the CPU from the per-packet memory copy and times-

tamping operations. Similarly, efficient memory management

algorithms must be adopted to perform per flow operations,

which optimize both the flow lookup performed for every

packet, and the garbage collection mechanisms required to

avoid memory starvation.

V. CONCLUSIONS

In this paper, we described our experience in engineering

and using Tstat, a software based Internet traffic monitoring

tool that we have being developing for the past 10 years.

Presenting measurements collected from several ISP networks,

we have shown that Internet traffic widely changes over both

time and space: application shares are different at different

networks even if common trends are visible due to slow

changes in applications popularity; however, sudden changes

are observed after the deployment of disruptive technologies

made by applications themselves. This call for the develop-

ment of automatic mechanisms that continuously update the

classification capabilities of a tool, a challenging goal that the

research community is currently facing.
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