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Abstract—This work addresses the performance evaluation
of Content Centric Networks (CCN). Focusing on a realistic
YouTube-like catalog, we conduct a very thorough simulation
study of the main system performance, consider several ingre-
dients such as network topology, multi-path routing, content
popularity, caching decisions and replacement policies.

Summarizing our main results, we gather that (i) the impact
of the topology is limited, (ii) multi-path routing may play
against CCN efficiency, (iii) simple randomized policies perform
almost as well as more complex ones, (iv) catalog and popularity
settings plays by far the most crucial role above all. Hopefully,
our thorough assessment of scenario parameters can assist and
promote the cross-comparison in the research community —
for which we also provide our CCN simulator as open source
software.

I. INTRODUCTION

Though some might argue that “even on the Internet, content
is not king” [1] still applies today, a new communication
paradigm, namely Information centric networking (ICN), may
have a disruptive impact on the Internet ecosystem. The
adoption of ICN may indeed not only reshape the underlying
Internet technology, but also threaten the current business
models, with the content and optimization business moving
down from “over the top” approaches such as Content Dis-
tribution Networks (CDN) to lower layer services, available
directly to the owner of the infrastructure.

Recognizing that end users are often more interested in
obtaining content, rather than merely being provided with
connectivity among two addressable entities, a number of ar-
chitectures (overviewed in [2]) have started proposing caching
of objects (or object chunks) as network primitives. While
these proposal differ in a number of aspects (e.g., the way
content is named, content resolution is addressed, etc.) the
crucial importance of in-network caching of popular content
is common to all. Among these proposals, Content Centric
Networking (CCN) [3] is one the most promising: in CCN,
content is sent in reply to interest packets addressing named
data chunks, that gets cached along the way back to the request
originator. In CCN routers, caches de facto replace traditional
buffers, so to avoid redundant network traffic [4]: interests
packets are matched with cached data, which has to be done
per packet, for all requests, and at line speed.

Yet, the potential impact of CCN has not been thoroughly
assessed so far: though caching has already been extensively
studied, a number of architectural details make caching in
CCN a relatively new, and largely unexplored, research topic.
The lack of CCN performance evaluation is partly due to the
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scale of the problem (large CCN cache and Internet catalog
sizes), to its strict requirements (line speed operation) and
complex scenarios (network of caches, user behavior, etc.).
For one, as in CCN all nodes may cache the content, and
since multiple paths can be used, it follows that the network of
caches is no longer arranged as a tree, but as an arbitrary graph.
Moreover, though CCN is expected to offload a significant
amount of traffic from ISP networks, we stress that ISPs are
interested in offloading their peering links with other ASs,
rather than their internal links. Otherwise stated, ASs will
be interested in fetching new CCN data chunks only once
from external ASs, to reduce the transit traffic: this translates
into the need for maximizing the content diversity of caches
within an AS, so that most of the content can be found
within the AS boundaries. Notice that this may partly tradeoff
with the minimization of user delay and network bandwidth
usage — as simply caching many replicas of popular content,
the nearest possible to the user, may reduce cache diversity.
Finally, contrary to early literature on Web caching, there is no
consensus on the evaluation scenario for CCN in the scientific
community so far — which is exacerbated by the changing
nature of Internet applications and users’ behavior [5].

The contribution of this paper are as follows. First, we
develop an efficient and scalable chunk-level CCN simulator,
that we make available to the scientific community as open
source software [6]. The simulator allows us to assess CCN
performance in scenarios with large orders of magnitude for
CCN cache sizes (up to 10° chunks), catalog sizes (up to 108
files), and file sizes (up to 10® chunks). Second, we conduct a
thorough simulation campaign, considering several popularity
settings, 6 topologies, 2 routing strategies, 4 cache decision
and 4 cache replacement policies. Results of this campaign
allow us to conclude that (i) the impact of the topology
is limited, (ii) multi-path routing may play against CCN
efficiency, (iii) simple randomized policies perform almost
as well as more complex ones, (iv) catalog and popularity
settings plays by the way the most crucial role. Third, we take
an extreme care in the scenario definition, investigating the
effect of wide parameter ranges that, along with the simulator
software, can hopefully assist and promote cross-comparison
in the research community.

The reminder of this paper is organized as follows. Sec. II
provides a thorough survey, taxonomy and comparison among
the most relevant related work. Sec. III then describes the
system parameters and scenarios, whose simulation results are
presented in Sec. IV, after which Sec. V concludes the paper.



II. RELATED WORK

As this work focuses on performance aspects of CCN,
for reason of space, we invite the reader to [2] and [3] for
architectural aspects of ICN and CCN respectively (of the
latter, we however provide a brief overview in Sec. III). A
summary of the most relevant related work is presented in
Tab. I, considering different taxonomic criteria. As previously
introduced, despite a large caching literature (see e.g., [7] for
a thorough survey), novel aspects of ICN architectures (e.g.,
splitting content in chunks, complex topologies, line speed
requirement, etc.) refuel the research interest.

A first limit of current caching work is that, with few
exceptions [2], [8]-[12], entire objects are generally cached. In
CCN, content is instead partitioned in sub-objects (or chunks),
so that different chunks of the same object may end up being
cached on different CCN routers. This design decision partly
follows from the efficiency of chunk-based diffusion shown
by BitTorrent in P2P networks, that lately was brought into
CDN [13] as well.

Concerning caching policies, as pointed out in [14], much
attention has been devoted to cache replacement issues (over
40 policies are overviewed in [7]), while cache decision
policies have being studied sporadically (to the best of our
knowledge, only by [14]-[17]). Still, due to the fact that
caching operations must happen at line speed in CCN routers,
most of the existent decision and replacement policies are not
of practical relevance, as [10] points out.

As far as replacement policies are considered, Least Re-
cently Used (LRU) has been used in the context of CCN [8],
[11], [12] and of the more general ICN context [2], [9], [18].
Only few work considers other policies, such as Most Recently
Used (MRU) and Most Frequently Used (MFU) in ICN [9].
Interestingly, [9] shows LRU performance to be indistinguish-
able from MRU/MFU, which are thus not sufficient to counter
the “dictatorship of popularity”. Moreover, even a simple LRU
policy —often used in turn as a good enough approximation
of Least Frequently Used (LFU)- may be too complex to
implement, so that Uniform random replacement (UNIF) may
be preferable to keep CCN simple and scalable. Possibly,
N > 2 elements are sampled for eviction, and after the
replacement decision is taken M out of the N — 1 remaining
elements are kept for the next eviction, as this may provide
significant performance improvements [19].

As far as decision policies are considered, generally the
assumption is made that any new content gets always cached.
Few exceptions to this rule come from the Web caching
[14]-[17] or CCN [10] contexts: however, the approach in
[15] doesn’t apply to CCN due to implementation complexity,
while DEMOTE [16] is known to poorly perform on network
of caches. With this respect, only the Leave Copy Down (LCD)
policy [14], [17] is simple enough to be worth implementing
in CCN. Again, an even simpler policy is considered by [10],
where caching decisions are taken uniformly at random with
a fixed probability FIX(P).

Finally, we point out that explicit cache coordination poli-

TABLE I
COMPARISON OF RELATED WORK ON CACHING FOR WEB, ICN AND CCN

Granularity: Object-level caching chosen by most work, except
chunk-level [2], [8]-[12]
LRU [2], [8], [9], [18], MRU, MFU [9]

UNIF [10], UNIF(M,N) [19]

Replacement:

Decision: Content always implicitly cached, except
Fix(P) [10], [14], [17], LCD [14], [17]
Topology: Tandem and cascade [10]-[12], [14], [17]

Trees [8], [11], [12], [14], [17], synthetic
GT-ITM stub with 310 [2] or 1225 [9] nodes.

cies (e.g., see [20] for Web, and [21] for ad hoc domain) would
likely violate CCN line of speed constraint. For instance, [21]
estimates the local density of requested chunks, in order to
decide if they are worth caching (and for how long). Density
estimation is performed during an inference phase for each
chunk, that would introduce a per-chunk slowdown that is
simply not affordable in the CCN context.

We now stress what are, in our opinion, the limit of existing
work and why they are not fully faithful of CCN performance
in an Internet environment, considering (i) analytical and (ii)
simulation based studies. First, most of previously developed
models are based on different assumptions that are not fit to
CCN due to either (i) chunks partitioning or (ii) topological
assumption. As CCN requests for consecutive chunks of the
same objects are now correlated, the independent reference
model (IR, where all requests are i.i.d.), popular in caching
studies, no longer holds: correlated arrivals are only studied in
recent work [11], [12], though the analysis is limited to simple
cascade or tree topologies. Conversely, though the approximate
cache model in [22] applies to general network topologies, it
considers an object granularity (and further assumes that on a
cache miss, the object is instantaneously downloaded before
the next request for the same object hits the cache). Hence,
to the best of our knowledge, an analytical work overcoming
both limits has yet to appear.

Yet, even simulation-based studies of information-oriented
networking are often simplistic in their (i) topological assump-
tions or due to the (ii) scale of the considered system. Indeed,
with the exception of [2], [9] (employing synthetic topologies
generated with GT-ITM), most simulative work still considers
simple topologies (e.g., cascade or trees [8], [10]-[12]).

Even more important, the scale of the considered system is
often underestimated. Notice indeed that, in Web caching it
was reasonable to assume pretty large amount of caches (e.g.,
disks), which implied that an accurate estimate of the ratio
between the cache size and the catalog size was not an issue
(e.g., add disks). In CCN instead, cache size is technologically
limited by memory access speed [10], due to the fact that
interest and data packets need to be serviced at the Network
Interface Card (NIC) speed: as it is not possible to arbitrarily
increase size of caches on board of CCN routers, it becomes
imperative to more accurately estimate the size of the catalog
that CCN is expected to service, in order to assess whether
CCN is able to really achieve the promised breakthrough.



TABLE II TABLE III
SYSTEM PARAMETERS INVESTIGATED IN THIS WORK CHUNK, FILE, CACHE, CATALOG AND POPULARITY IN RELATED WORK
Parameter ~ Meaning Values Parameter  Values
c Chunk size 10 KBytes c 1KB [8], 10KB [11], [12], 16MB [9]
F File size up to 104 chunks (10 MB) c 6.4MB [8], SOMB [11], 2GB [12], 10GB [10]
(geom. distributed) F 1IMB [11], 7MB [12], 690MB [9]

|F| File number up to 108 files |F| 250-500 [22] , 1K [2], [18], 20K [11], [12], 100K [17] files
[F|F Catalog size up to 10'5 bytes (1PB) Vara 0.25% [11], 0.5%-20% [9], 1-10% [17],
C Cache size up to 10% chunks (10 GB) 1.45% [12], 4% [18], 4%-10% [22]
\Lata Cache/catalog ratio [107°,10~"] o 0.6 [91, 0.9 [17], 1 [2], [22], 2 [11], up to 2.5 [12]
« Zipt exponent [0.5,2.5]
q MZipf plateau {0,5,50}
A Arrival rate [1,10]Hz
w=1 Control window width 1 chunk .
23 Number of paths 112} most relevant system parameters used in related work, namely
gR Cache replacement policy ~ FIFO,LRU,UNIF,BIAS the size of (i) content chunks, (ii) objects, (iii) router caches

D Cache decision policy ALWAYS,FIX(P),LcD . . .
Not Network topology e T IV and (iv) the whole catalog (in number of objects).

III. SYSTEM AND SCENARIO DESCRIPTION

While for reason of space, we invite the reader to [3] for
a description of the CCN architecture, we need to briefly
introduce CCN terminology. CCN is based on data structures
such as Content Store (CS), Pending Interest Table (PIT) and
Forwarding Information Base (FIB) table. These structures
are consulted at each interest packet that users express for
(univocally addressable) named data. More precisely, a CS
lookup is performed for each interest packet in the data plane:
in case of a cache miss, the interface of the incoming interest
is appended to the PIT, and the interest packet gets routed
according to FIB information. This process iterates so that,
when a cache is hit, a data chunk is sent back in the
network, and travels through the information stored in the PIT:
whenever an interest is satisfied, the corresponding entry in the
PIT is then removed.

Besides cache and catalog size (Sec. III-A) or content pop-
ularity (Sec. III-B), already at first sight, several details may
affect CCN performance: e.g., on different network topologies
(Sec. II-C), interest may be forwarded along either a single
shortest path, or through multiple-paths, depending on the
routing algorithm (Sec. III-D). Then, once data travels back
in the CCN data plane following the PIT table, CCN routers
along the path participate in a caching process, that can be
modeled as being composed by two distinct policies. First, a
decision policy (Sec. III-E) is taken whether or not to cache
the current data. Then, in case the router decides to store the
object, it may need to evict a chunk according to a replacement
policy (Sec. III-F) in case the cache is full.

In the reminder of this section, we describe the parameter
space and support we investigate in this work, that we sum-
marize in Tab. II for the sake of readability.

A. Cache and catalog size, content popularity

As we previously argued, the scale of the considered system
is often underestimated, or at least the operational point at
which the system is evaluated is not always realistic. To
convince of the importance of the system parameters related
to the catalog, we have summarized in Tab. III, some of the

From the table one can evince that CCN chunks are expected
to be packet-size (IKB [8]-10KB [11], [12]), hence much
smaller than the typical chunk sizes of CDN (60KB [13]), P2P
(BitTorrent 250KB-4096KB [23]) and other ICN architectures
(16MB [9]). In our work, we select 10KB chunks as in [11],
[12]: despite a CCN chunk size is not specified in [3], we
believe that in reason of the CCN overhead —due to (i) interest
packets and (ii) large headers for content naming and security
issues— chunk sizes smaller than 10KB would likely be an
overkill.

As far as CCN router cache size is concerned, [10] starts
from the observation [4] that about half of the caching benefits
at packet level happen in the first 10sec.: considering a
capacity of 1Gbps, [10] sizes to about 12GB the amount
of memory that can be addressed at line speed (adopting
a constructive approach and employing a two-levels address
scheme). Yet, the cache size typically considered in simulation
is much smaller (from 6.4MB [8] to SOMB [11] and 2GB [12)),
although no proper justification for these selections is given.
Hence, we select cache sizes of 10GB (10'° Bytes or 106
chunks) as a realistic case study of CCN performance.

Finally, the number of files in the considered catalogs can
be as low as 250 objects [22], topping to 20K [11], [12]
objects for the largest CCN catalogs. Taking into account also
the object size (in chunks) considered in those work, largest
catalogs varies between 2Mchunks [11] and 13.8Mchunks
[12], i.e., 20GB and 138GB respectively. Yet, we believe these
sizes to be extremely small compared to Internet catalogs —
which is easily confirmed by summing up the storage size of
our portable devices.

To gather a more realistic estimate of nowadays Internet
catalog size, we consider two of the most popular Internet
content diffusion systems: namely, the YouTube portal for
video content, and the BitTorrent P2P file-sharing application.
To estimate the catalog size, we consider the approximate
number of videos (about 108 [24]) and torrents (roughly, 5-106
[25]) and their respective average object size (10MB [26])
and (760MB [27]): overall, we can estimate both catalogs
to be on the order of a few PB (i.e., 10'° Bytes). Notice
that, since the above values have been gathered at different
times, from different vantage points, on different sets, we
expect to get only a rough estimate of the catalog size. Yet




we see that previous work underestimated the catalog size of
about 4 orders of magnitude. In the following, we consider
a YouTube-like catalog, consisting of 10% objects (100M),
of geometrically distributed' size with average 10® chunks
(10MB).

Moreover, we expect system performance to be determined
by the ratio of the cache size C' over the catalog size |F|F.
As reported in Tab. III, the ratio ﬁ considered in the ICN
literature varies between a minimum of 0.25% [11]-0.5% [9] to
a maximum of 10% [22]-20% [9]. Yet, considering realistic
CCN cache size and Internet catalog, this ratio seems more
likely to be on the order of 10~5, hence much smaller than
the one considered in previous studies. As a consequence, ICN
benefits may therefore be overestimated by current literature.

B. Content Popularity

Another very important aspect that concur in determining
the system performance is the content popularity model.
Rather typically [11], [12], [17], [18], CCN studies consider
(variants of) Zipf popularity, which is simply tuned by a single
parameter «, (i.e., the exponent characterizing the distribu-
tion). Yet, no consensus has been reached on the exact model,
as for instance [9] resorts to a Mandelbrot-Zipf (MZipf for
short) distribution, while [18] also includes uniform popularity,
and [11], [12] consider several classes distributed with Zipf
popularity (with objects within each class uniformly popular).

Moreover, no consensus has been reached on the actual
settings either, as the considered value of « varies in a rather
wide range 0.6 [9]-2.5 [12] as shown in Tab. III. For instance,
the minimum of 0.6 [9] is taken from a MZipf fitting of
Gnutella catalog [28] — where, in this case, the distribution
is also determined by the plateau parameter (¢ € [3,121]
depending on the Autonomous System under observation, and
typically ¢ < 50). Values of a € [0.6,1.2] are adopted in
[2], [12], [17], [22], where the extremes are typical of lightly
loaded and busy Web servers respectively [29], while large
values of o such as 2 [11] and 2.5 [12] derive from the very
same analysis of YouTube [24] we used early to determine a
realistic Internet catalog size.

Hence, the range of « values are, at least apparently, well
motivated. Yet, if we consider more closely the YouTube
popularity, for the sake of the example, we see that the o« > 2
value reported in [24] only fits part of the tail, while the body
of the distribution appears more likely to follow a Mandelbrot-
Zipf law?.

Though this might seem, at a first sight, only a minor issue,
in reality it is not. The « parameter of the Zipf distribution
significantly shapes the request arrival pattern, practically
limiting the request to a (possibly very narrow) subset of

Notice that YouTube filesize in [26] is well fitted by a geometric distri-
bution (with average 103 chunks, of length 10KB, per file), as this reflects
natural differences in the video durations. Conversely, geometric fitting of
BitTorrent content would not be valid, due to peaks for CD and DVD-sized
objects [27].

2We have not access to the popularity data shown in Fig.3 of [24] to perform
a fitting, however the dissimilarity from a Zipf shape (and the similarity with
Mandelbrot-Zipf) is evident.
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Fig. 1. Rank of the 99-th percentile of popular requests, modeled according
to a MZipf distribution with catalog size |F'|, exponent o and plateau g.

the whole catalog. Let us evaluate the rank |Fgg| of the 99-
th percentile for different values of the MZipf catalog size
|F| € {10% 108}, and plateau® ¢ € {0,5,50} parameters,
which we depict in Fig. 1 as a function of the MZipf exponent
a € [0.5,2.5]. Intuitively, the 99-th percentile rank represents
the number of objects in the catalog that make up the 99%
bulk of users’ requests.

From the picture, it is easy to grasp that for a < 1,
almost the whole catalog needs to be cached to satisfy 99%
of the requests irrespectively of the plateau q parameter:
in this operational region, we expect caching to be hardly
effective, due to the unfavorable 10~° cache/catalog ratio early
estimated.

Considering the Zipf case, for high values of o > 2 the
99-th rank converges to the same value irrespectively of the
catalog size. Moreover, even in the case of very large catalogs
consisting of 10® objects, 99% of the requests are directed
to slightly more than a dozen of objects. Hence, we get that
if &« = 2.5 would hold for the YouTube catalog, a 150MB
cache would suffice to store the bulk of the popular objects.
Considering the MZipf case, notice that though the curves still
converge for high « irrespectively of the catalog size, a higher
number of objects needs to be cached to satisfy 99% of the
requests (roughly, |Fgg| grows by one order of magnitude for
each step from ¢ = 0 to ¢ = 5 and ¢ = 50).

Hence, we expect CCN performance to be drastically de-
termined by the popularity exponent o (and by the plateau ¢
at a second order). Yet, as there is no consensus so far on
the settings of the above parameters, rather than sticking to a
specific parameter choice, in the following we explore a wide
range of « and g values (as reported in Tab. II) so to assess
the boundaries of CCN usefulness. As reference, we will also
consider o = 1.5 as the centerfold of the [0.5,2.5] range, and
as it corresponds to the phase transition shown in Fig. 1.

C. Network topology

To promote cross comparison we resort to real network
topologies that are publicly available through Rocketfuel [30],
so that alternative approaches can be compared on the very
same set of topologies. As a reference, we also consider
a standard binary tree topology with 15 nodes and 8 leafs

3Notice that MZipf with ¢ = 0 degenerates into a Zipf distribution.



TABLE IV
TOPOLOGICAL PROPERTIES OF THE CONSIDERED NETWORK TOPOLOGIES.

Segment | N ) o5/0 | Alms] | D

(a) Abilene Core 11 2.54 0.19 11.3 8
(b) Tiger2 Metro 22 | 3.60 0.17 0.11 5
(c) Geant Aggr 22 3.40 0.41 2.59 4
(d) DTelekom | Core 68 | 10.38 17.21 3
(e) Level3 Core 46 | 11.65 8.88 4
Tree Ref. 15 2.54 1.00 3

(while we defer the use of GT-ITM topology for future
work). The main characteristics of the considered topologies,
corresponding to different network segments, having different
sizes and properties (e.g., mean § and standard deviation
ogelta of the degree, link delay A, diameter D, etc.) are
reported in Tab. IV.

For each topology, we only consider the AS backbone by
eliminating all single homed nodes (this is with no conse-
quence, as the last CCN edge router is expected to serve
multiple clients). We consider that the system operates at a
load well below congestion: hence, as propagation delays of
Tab. IV dominate transmission delays (in the range of expected
capacities of CCN routers), we consider infinite backbone link
capacity.

D. Routing Process

Another aspect that might affect system performance, and
that makes CCN peculiar with respect to other caching studies,
is that nodes are arranges with arbitrary topologies. Hence,
unlike in hierarchies of Web objects, named content in CCN
can in principle take any path in the network.

We investigate the impact of routing without however being
bound to a specific routing algorithm. We therefore assume
that an external routing process (and name resolution scheme)
provide multi-path alternatives from the content requester to
the content originator. Clearly, the paths of interest packets
may end up earlier, in case the corresponding data is hit from
the cache of any node along these paths.

As primary path, we consider the classical Dijkstra shortest
path between the requester and the originator. As secondary
path, we instead use [31] to find the shortest path that is the
most diverse from the primary*: notice that by reducing the
share of faith between paths, ISPs are robust face to both
failures and traffic spikes.

Although multiple policies could be envisioned for the use
of alternate paths in the interest/data plane (e.g., per-object

4We compute the secondary path by running Dijkstra on a modified graph
in which the cost of links along the primary path are increased by the
network diameter, and other link costs are unitary: in this way, overlaps
are tolerated when strictly necessary, i.e., when the path would otherwise
be disconnected [31].

vs per-chunk, alternating between paths, using the secondary
path with a fixed probability, etc.) in this paper we limitedly
consider two simplest alternatives — where interests follow
either a single path (R = 1) or where both paths are used
in parallel (R = 2).

E. Cache Decision Policy

As previously introduced, cache decision policies are much
less studied w.r.t replacement policies. At first sight indeed,
it may appear that all arriving content needs to be cached,
implicitly assuming recency of the arrival as a good estimator
of the chunk value (i.e., the fact that the content will soon
be used again, which kind of follows a LRU reasoning).
However, at the network scale, systematically caching all
chunks may translate in a low cache diversity, hence reducing
CCN efficiency. Rather, as already noticed in [10] and [17] for
cascades and tree topologies respectively, increasing the cache
diversity may be beneficial to the overall system performance.
In light of the above observation, we implement the following
decision policies, that attempt at an uncoordinated distributed
diversification of CCN router caches:

o ALWAYS: new content is always cached.

o FIX(P): caching decisions are taken uniformly at random
as in [10], with a fixed probability P € {0.75,0.9}.

o LCD: on each miss, the Leave a Copy Down policy [17]
moves the content a single hop down, but downstream
router further away do not cache the request.

Intuitively, F1X(P) achieves the simplest possible level
of uncoordinated and distributed cache diversification: yet,
simple random decision still allow a given amount of overlap
between caches. Instead, LCD moves the content from the
source toward the client only on subsequent requests: hence,
differently from ALWAYS, under LCD the popular content does
not instantaneously replicate on all CCN routers along a path.

F. Cache Replacement Policy

Though cache replacement policies have been long studied,
two peculiarities in CCN may however question previous
work: first, requests are correlated (for subsequent chunks of
the same object) and second, replacement must happen at line-
speed (which significantly limits the variety of policies that can
be implemented in practice). In this work, we consider:

o LRU: the least recently used chuck is replaced.

o FIFO: the oldest inserted chunck is replaced.

o UNIF: a chunk selected uniformly at random is replaced.

e BIAS: two chunks are selected at random, and the most
popular is replaced.

Notice that we consider LRU as an upper bound for the
complexity of the policies that can actually be implemented
at line speed. Hence, while it is known that frequency based
policies outperform LRU, they are out of CCN scope due to
implementation complexity issues.

We then consider UNIF and FIFO as examples of a simple
replacement policies. We point out that FIFO was the one
and only cache replacement policy initially implemented in



PARC CCNx [32] prototype, while UNIF is known to work
well in practice (for instance [33] show that in P2P networks,
in presence of highly skewed content, LRU and UNIF tend to
behave similarly).

We finally design a new, counter intuitive, cache replace-
ment policy that selects chunks to be replaced proportionally
to their popularity. Indeed, though it has been proven [34]
that, for paging equal size objects under the IR model, the
optimal caching strategy demands the static replication of the
most popular documents up the capacity of the cache, however
IR no longer holds in a CCN network with correlated arrivals
and multiple paths. Hence, we advocate the need to re-explore
the replacement policies design space.

The idea is that, as popular content will be often requested,
individual caching decisions will be taken more often that
for unpopular content. In turn, this will force multiple copies
of popular chunk to be disseminated in many caches, to the
detriment of cache diversity, which we counter by biasing the
replacement toward popular chunks. In practice, this policy
can be implemented with frequency counters H;, incremented
by one unit at each cache hit: whenever a new chunk arrives,
we select two chunks z, y at random and replace the one with
the largest hit value (i.e., argmax, ¢, ., H;).

This policy leverages on the “power of two” principle [35],
which was already used in the context of Web caching [19].
Notice that [19] proposes to keep part of the samples for the
next eviction as this translate into a significant performance
gain. This can be implemented by keeping the chunk with
the lowest hit (i.e., the one that has not been evicted), and
sampling only an additional element on the next eviction: yet,
due to our selection metric H;, an undesirable effect happens.
Consider the case where we sample the least popular chunk:
as this chunk is the least popular, all other counters will be
incremented more frequently than this one, that will thus stay
in the cache forever. For the time being, we leave refinements
of this simple policy (e.g., how to keep old samples without
side effects) for future work.

IV. SIMULATION RESULTS

We implement a simplified chunk-level CCN simulation
model that faithfully represents the CS, PIT and FIB data
structures, implements CCN operations such as interest ag-
gregation and allows to univocally address content chunks.
However, aiming at building an highly scalable and efficient
simulator, we do not take into account the full details of CCN
naming and security aspects [3]. The simulator, written in C++
under the Omnetpp [36] framework, allows us to assess CCN
performance in scenarios with large orders of magnitude for
CCN cache sizes (up to 10° chunks), catalog sizes (up to 108
files), and file sizes (up to 10% chunks). To promote cross-
comparison in the scientific community, we make the simulator
available as open-source software at [6].

In this section, we report the most interesting results ob-
tained from a thorough simulation campaign, consisting of
more than 10,000 simulations exploring over 1,000 individual
system parameter settings. To gather performance metrics of

interest, we operate as follows. At time ¢ = 0 we run the
centralized path discovery algorithm, that yields a set of
multiple paths between any two node pairs. Starting from
empty caches, we simulate the system until caches fills up,
at which point we start the collection of all statistics, that
continues until the cache hit metric converges to a stationary
value. Unless otherwise stated, each simulation point reported
in the following represents the average value gathered over
10 simulation runs (with error bars reporting the standard
deviation).

A. Performance Metrics

Caching performance are usually expressed in terms of the
hit/miss probability. In CCN networks, additional metrics are
needed in order to capture the network-wide perspective, and
to further qualify the cache diversity vs link usage tradeoff.

As user centric-metric, beyond the usual cache hit probabil-
ity, we consider the path stretch d/|P| as the number of CCN
backbone hops d that the data chunk has actually traveled in
the network, normalized over the path length |P| until the
content originator (i.e., without caching). Notice that (i) we
measure the stretch only for cache hits, (ii) d = 0 when users
find the content at the edge CCN router, and (iii) in reason of
the normalization, path stretch is directly comparable across
heterogeneous topologies.

Since we consider to operate in a non-congested regime, link
utilization is not a relevant metric. Rather, we point out that
path stretch already indirectly reveals the load level since, in
a sense, it expresses the reduction of the number of links that
chunks have traveled along. Still, it may be worth identifying
whether possible resource hotspots may arise, such as CCN
nodes that are significantly more loaded than others. To do so,
we measure load fairness, for both data and interest packets:
denoting by D; (I;) the amount of data chunks (interest
packets) that transits from node j, we express fairness with
the usual Jain formulation as Jp = %, with N the
number of nodes in the network (low values of Jp indicate
that hotspots arise).

Finally, as CCN-specific metric, we define the cache diver-
sity as card(U;C;)/ >, card(C;), where card(C;) denotes the
size (in chunks) of the i-th cache, and actually, >, card(C;) =
NC' as we consider homogeneous caches. Cache diversity
expresses the ratio of the unique content stored across all
caches (i.e., without repetition) over the whole network cache
size (i.e., considering the aggregate of N caches). Cache
diversity can vary in the interval [1/N,1], with the lower
bound achieved in the worst case, corresponding to exactly
the same elements replicated in all caches. Notice that we
expect cache diversity to be affected by both decision and
replacement policies, and by popularity settings as well.

B. Content popularity, catalog and file size

We first consider the largest catalog size in CCN literature,
|F| = 10* objects, and assess the cache hit probability on a
binary tree (with 15 nodes and 8 leafs) for varying settings
of MZipf popularity «, q. The root of the tree is connected to
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the unique repository, while the 8 leafs perform object-level
requests with exponentially distributed arrival times at a 1 Hz
rate. We consider standard replacement (LRU) and decision
(ALWAYS) policies, and limitedly consider single path routing
(due to the tree topology). File size is geometrically distributed
with average F' = 102 chunks, and we vary the ratio of
the cache over catalog size, so that a single cache can hold
between 1/10 and 1/10,000 of the whole content. Notice that
performance are also affected by the average number of files
that can be stored in a single cache C/F, that is reported on
the top x-axis and varies from 1000 to 1.

We depict the contour plot of the cache hit probability
for the above settings in Fig. 2. Notice that the explored
parameter range covers almost the full support of the cache
hit observable. As expected, large values of a possibly let
the number of files that can be stored in the cache exceeds
the 99% request percentile, which leads to an overly simple
caching problem (that the plateau ¢ may temper).

We now move to consider a large YouTube-like catalog
consisting of |F| = 108 files with geometrically distributes
size equal to I = 103 on average (1PB). Given that we
consider C' = 10° chunks large caches (10GB), the ratio
ﬁ = 107" is thus one order of magnitude smaller than the
rightmost scale of Fig. 2. At the same time, since C/F = 103
as in the leftmost scale of Fig. 2, we may expect to achieve non
negligible cache hit values depending on the MZipf settings.
We select a = 1.5 as centerfold of our explored parameter
range, where 99% of the requests are directed to the |Fyg| =
5733 most popular files of the whole | F| = 108 catalog, about
17% of which could be stored in a single cache. Now, in a
15-nodes binary tree, all caches in the same level will likely
store the same content, while due to the filtering effect, higher
level caches will store different content. Assuming that caches
on different levels store completely disjoint content, as for a
tree of depth 3 there are 4 cache levels (including the root
CCN cache before content the originator), with back of the
envelope calculation we may expect to achieve a cache hit of
4C /(| Foo|F) = 0.7.

However, file size plays an important role as well. To
understand what changes from an object-wise to a chunk-
wise caching, we perform the following experiments. Keeping
the ratio % = 1075 constant, we let the file and cache

size jointly scale, so that also the C'/F = 10 ratio remains
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constant. Results are shown in Fig. 3, as a function of the
cache size (YouTube case corresponds to the rightmost scale).
First, notice that despite both ﬁ and C'/F' are now constant
(unlike in Fig. 2) there is a further hidden factor affecting
CCN performance. This factor can be identified in the rate at
which new object-level requests are issued, which is constant
in Fig. 3 across all file sizes. With a constant W = 1 interest
window, at most one outstanding chunk request can be sent by
any user prior to receive the corresponding data and issuing
another interest. The download time of the full object is thus
related to the network RTT (on the tree, 6 ms up to the
root for 1 ms link delay), so that downloading 103 chunks
long object takes at most 6 sec (reduced in the case of cache
hits). Hence, the larger the files, the longer now becomes the
transfer of a full object: when a higher number of ongoing
downloads compete for the cache space, this in turn lowers
the cache hit probability. Second, notice that when files are 1-
chunk long, there is a significant difference between LRU and
UNIF replacement policies: however, this difference shrinks
as file size (and contention) increases, and eventually almost
vanishes.

Overall system performance is reported in Fig. 4(a) for
varying popularity models: as expected, low « yield to poor
system performance, that further worsen for increasing ¢q. It
can be seen that performance metrics are highly correlated:
when o = 1, the closest cache does not necessarily have the
chunk of interest, hence a larger stretch. Moreover, as the size
of the popular part of the catalog is large, so is the diversity.
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As far as load fairness is concerned, we report both data (gray
bars) and interest (white bars) fairness: notice that as requests
for popular content are filtered from the first caches, these are
more loaded than upstream ones (explaining the lower interest
fairness). Conversely, for highly skewed popularity o = 1.5
the same content replicates everywhere, so diversity of the
caches approaches the minimum (dotted line), and stretch
lowers as well, since the content is often found in close caches.

C. Routing, caching policies and topologies

Considering YouTube like  scenario  with
(F,|F|,C,a,q) (103,108,106,1.5,0) we perform a
set of simulations for all combination of 6 topologies, 2
routing strategies, 4 caching decision and 4 replacement
policies, averaging over 10 simulation runs. In order for
simulations to be comparable across topologies, we still
consider a single repository (as in the tree), placed behind
a node selected at random. On each topology, 8 nodes (as
in the tree) perform object requests at a 1Hz rate, with a
window of W = 1 chunk.

We also consider the impact of a single (Rep=1) vs multiple
repositories with disjoint content (Rep=8), mimiking in the
latter case an AS with several peering links toward different
content providers. However, as the impact of multiple reposi-
tories is minimal, we report the single repository case to avoid
cluttering the pictures, unless otherwise stated.

We first inspect the impact of routing and caching policies in
Fig. 4(b). For each routing strategy and all network topologies,
we report the average cache hit conditioning over a given
decision policy, averaging over all replacement policies (top
plot) or conditioning over a replacement policy (bottom plot).
Consider single path case first: since we consider a single
repository, this case corresponds to a non-regular tree, where
the heterogeneity of link propagation delays further shapes
the interest (and chunk) arrival process at the different caches.
Rather surprisingly, the performance difference across replace-
ment and caching policies is minimal.

Consider now the difference between single vs multiple

the

paths. In case interest travels along multiple paths in parallel,
on the one hand this increases the likelihood that an interest
packet hits a cache containing the corresponding chunk. At the
same time, this also possibly induces a “pollution” of caches
along the alternate path, as now the data traveling back will
cause eviction on multiple caches. As Fig. 4(b) clearly shows,
cache pollution offsets the advantage of reaching a higher
number of caches, worsening the overall system performance.
Notice that this happens consistently for all decision and
replacement policies, with FI1x(0.9) and UNIF performing
slightly better than the others in the multi-path case.

We then select the most commonly used cache configuration
(ALWAYS+LRU) and the best performing one in case of multi-
path (F1X(0.9)+UNTIF) and analyze the impact of the different
topologies. Fig. 4(c) reports cache hit and path stretch statistics
for (i) tree, (ii) the topologies of Tab. IV and (iii) the average
over all topologies. Notice that, on average ALWAYS+LRU
and F1x(0.9)+UNIF performance are hardly distinguishable
(and rather ALWAYS+LRU is not always the best choice overe
all topologies), which holds true for both single and multiple
repositories.

V. DISCUSSION AND CONCLUSIONS

This work presents a simulation study of Content Cen-
tric Networks (CCN), with special emphasis on caching
performance. We consider several aspects including: sizing
of catalog and caches, popularity, caching replacement and
decision policies, topologies, single vs multiple-path routing
strategies. Summarizing our main results, we gather that (i) the
impact of the topology is limited, (ii) multi-path routing may
play against CCN efficiency, (iii) simple randomized policies
perform almost as well as more complex ones, (iv) catalog
and popularity settings play by the way the most crucial role.

As for (i), this is not surprising, as [37] that suggests
request stream aggregation, more than network topology, to
be a key factor in cache placement; (ii) is instead more
surprising, and call for future investigation on different routing
strategies. Then, (iii) on the one hand confirms the importance



of correlated arrivals, that void the IR assumption; on the other
hand, this is a positive finding, as it also suggests that simple
policies are able to provide good enough performance in CCN.
Yet, the most disturbing aspects is that, (iv) unless a proper
sizing of the catalog, and assessment of the popularity of its
elements, is performed, no definitive answer of CCN efficiency
can be claimed — which call for more systematic measurement
work beyond [24]-[28].

In the following, we aim at extending this work in a number
of directions. While our choice of caching policies is already
fairly representative, it is however not exhaustive. As far as
the decision policies are concerned, we point out that also
deterministic (e.g., based on hashing of the content as done
in [38] for P2P VoD) or probabilistic distance-based policies
(e.g., as done in CONIC [39]) may be worth investigating. The
same goes for heterogeneous replacement policies, that were
shown to provide moderate improvement in hierarchies of Web
caches [40], [41]. In CCN, a promising direction could also be
to investigate the heterogeneous cache size vs cache placement
tradeoff: on the one hand, larger caches should be placed at
nodes with higher betweenness centrality (i.e., that lay on a
large number of shortest paths); on the other hand, this may
not always be feasible due CCN line of speed operation and
technological constraints (e.g., large memories are generally
also slow and thus may be available only at the edge of the
network). Along a similar line, it may be worth jointly investi-
gating routing strategies and cache replacement (e.g., similarly
to [18] where object requests are forwarded to the most recent
direction the same object was previously forwarded). Finally,
the impact of multiple repositories with shared content, user
behavior (e.g., [42] points out that 60% of YouTube videos are
watched for less than 20% of their duration) and of transport
dynamics (e.g., having heterogeneous or time-varying interest
window W) needs to be assessed as well.
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