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Abstract—This paper proposes KISS, a novel Internet classi-
fication engine. Motivated by the expected raise of UDP trafé,
which stems from the momentum of P2P streaming applications
we propose a novel classification framework which leveragesn
statistical characterization of payload.

Statistical signatures are derived by the means of a Chi-Squre
like test, which extracts the protocol “format”, but ignores the
protocol “semantic” and “synchronization” rules. The signatures
feed a decision process based either on the geometric distan
among samples, or on Support Vector Machines. KISS is very
accurate, and its signatures are intrinsically robust to paket
sampling, reordering, and flow asymmetry, so that it can be usd
on almost any network.

KISS is tested in different scenarios, considering traditbnal
client-server protocols, VolP and both traditional and new P2P
Internet applications. Results are astonishing. The aveige True
Positive percentage is 99.6%, with the worst case equal 984
while results are almost perfect when dealing with new P2P
streaming applications.

Index Terms—Traffic classification, Supervised learning algo-
rithms

|I. INTRODUCTION

Last years witnessed a very fast-paced deployment of n

Internet applications, ignited by the introduction of thecs

The mechanism we propose is based on the idea of au-
tomatically identifying the application protocol “fornfatoy
means of a statistical packet inspection. This already gatov
successful in assisting the identification of particularlgky
traffic such as the one generated by Skype [2]. In this paper,
we push this intuition further, arguing that, due to the con-
nectionless service of UDP, the very first bytes of the UDP
payload of traffic streams are likely to carry some applica-
tion layer protocol (L7-protocol), in which constant vade
counters, random identifiers, etc., can be found. Recatliag
a protocol specifies the rules governing foemat semantics
andsynchronizatiorf a communication, we propose to extract
the L7-protocolformat while ignoring the actual semantic
and synchronization rules. This is achieved by statidfical
characterizing the frequencies of observed values in th® UD
payload, by performing a test similar to the Pearsoit'dest.

The results of the test are then used to compactly represent
application fingerprints, which we call Chi-Square Sigmesu
(pronounced as KISS).

While KISS fingerprints stem from packet inspection, they

Q\%ve several advantages over classical DPI signatures:

« They can be automatically derived, i.e., no cumbersome

cessful Peer-to-Peer (P2P) paradigm and fueled by the growt

of Internet access rates. This entailed not only a deep &éhange
of the Internet application landscape, but also undermined
the reliability of the traditional Internet traffic classiition .
mechanisms, typically based on Deep Packet Inspection) (DPI

as for instance simple port-based classification.

As such, research on Internet traffic classification haseghin
significant attention, with a large number of proposals (see
Sec. VI for an overview) that try to circumvent DPI limi-
tations. Indeed, DPI is deemed to fail more and more due
to: i) proliferation of proprietary and evolving protocpli)
embracement of strong encryption techniques and iii) adopt
of tunneling techniques [1], [2]. In previous proposals, RID
has usually been neglected in favor of applications runninge
over TCP. Motivated by the raise of UDP traffic volume, which
stems from the momentum of VoIP, streaming and P2P-TV
applications that deeply rely on UDP at the transport laye
we propose a novel classification framework that explicitlg
targets long-lived UDP traffic flows.

This work was funded by the European Commission under théi&me-

and tedious reverse engineering is required;

They can be quickly updated, so that they are well apt to
the context of fast-evolving Internet applications;

They are easily portable across different network settings
since fingerprints depend solely on the L7-protocol for-
mat;

They are robust to routing asymmetry, packet loss or
sampling, retransmission, or any possible strange packet
arrival pattern, since they are build over a statistical
characterization of protocol format rather than over a
deterministic description;

They are suitable to both per-flow and per-endpoint
classification;

Their computational and memory requirements are very
limited, so that they are suitable for on-line classificatio

However, KISS shares with DPI classifier the need to look
At application layer messages. As a drawback, in case of
ncrypted payload, both approaches become ineffective.

After that fingerprints have been extracted, proper classi-
fication must be achieved, i.e.,

individual items should be

work Programme Strep Project “NAPA-WINE” (Network Awaredpgo-Peer placed into the most likely class. A huge set of methodolo-

Application under Wise Network) and by a Cisco CollabomtiResearch
Initiative (CCRI) named “Protocol Oblivious (Behavioraliternet Traffic
Classification”. A preliminary version of this paper apphin [3].

gies are available from the literature, from simple thrégho
based heuristics [4], to Naive Bayesian classifiers [2], {8]



L o . . . TABLE |
advanced statistical classification techniques [6]. I8 fEper,  pegniTion oF FALSE/TRUEPOSITIVE AND FALSE/TRUENEGATIVE

we compare a simple geometric decision process based on

Euclidean distance with Support Vector Machines (SVMs) [6] Oracle Classification

. . .. e - . True False
which are well known in the statistical classification fietit Classification [ Posiive T True Posiive | False Posiive
have been rarely exploited in the context of Internet traffic  Result Negative | False Negative| True Negative

classification.
To prove the performance of the proposed framework, we

implemented KISS in Tstat [7], which then we use to derivgy|s into. For example, assuming that there are two claskes
the results presented in this paper. We test KISS on bojbjects, i.e., red and yellow apples, if the features of aptam
testbed and real traffic traces, collected from an operatiﬁ%ce it in an volume dense of red apples, we are inclined to
ISP network classifying traditional protocols (like DNSdan ¢|assify it as a red apple too. However, defining the surface
RTP traffic), affrmed P2P protocols (like eMule, BitTorrenthat delimits the volumes (to later take the decision) iski

and Skype) and emerging P2P-TV applications (like PPLivgince training points can be spread out on the multidimensio
SopCast, Joost, TVants). KISS exhibits excellent perfoiwea space and complex surfaces must be described. In this paper,
typically achieving more than 98.1% of True Positives Whege consider both simple geometric decision process and SVM

SVM is adopted. These astonishing results are due to beffised algorithm, which is considered to be among the most
the accurate characterization of the KISS signatures aed Hpwerful supervised learning algorithms.

precise classification of the SVMs.
The reminder of the paper is organized as follows. Sec.
introduces general concepts and specify the metrics chogenTesting methodology

to evaluate KISS performance. Sec. Ill describes the KISS o _ _
architecture, detailing both feature extraction and desis OnCe a classifier has been designed, its performance must be

processes. Sec. IV describes the set of traces used in §igluated and proper metrics must be defined. Assessing the
experiments and Sec. V reports a deep investigation of kigeerformance of Internet traffic classifiers is not a triviatk
testing its performance and parameters in many differefit€ (© the difficulty in knowing the “ground truth”, i.e., wha
scenarios. An overview of other classification techniques yvas the actual application that generated the traffic [9]tfe

presented in Sec.VI while Sec. VII concludes the paper. ground truth, an “oracle” is needed. Testing the classificat
engine by means of artificial traffic (e.g., by generatindfita

in a testbed) solves the problem of knowing the ground truth
. , i (you are the oracle), but reduces the representativeness of
. Before ent_enng into .the deta|I_§ of ,KlSS’ we briefly SUMMagpq experiments, since synthetic traces are hardly represe
rize the key ideas behind classification tools and the methqgﬂve of real world traffic. Assessing the performance agfai
ologies to test them and evaluate their performance. traffic traces collected from operative networks is therefo
mandatory. To extract the ground truth from the real traces

Il. GENERAL FRAMEWORK

A. Classifiers we developed an ad-hoc oracle, based on DPI mechanisms,
Classifiers are defined by two main processes (see [6], B)d we manually tuned and checked whose results. However,
for a more extended description): the oracle may still be fooled.

. Feature extraction: the process of extracting the subsefClassification accuracy is often reported in terms of False
of information that summarizes a large set of data, dtositive (FP) and True Positive (TP), and the False Negative

samples. (FN) and True Negative (TN). A test is said “True” if the
« Decision process: the algorithm that assigns a suitatfii@ssification result and the oracle are in agreement. Aigest
class to an observed sample. said “False” on the contrary. The result of a test is “Positiv

Examples of features are specific strings in the payloddhe classifier accepts the sample as belonging to thefspeci
(as in DPI), or packet size, or amount of exchanged byt&dass. On the contrary a test is “Negative”. For example,
Potentially, any summary of a packet stream can be used &ogsider a flow. The oracle states that this flow is an eMule

its choice has a deep impact on the classifier performance.ﬂﬁ‘\"’- If the flow is classified as an eMule flow, then we have a
our tool, features are defined from the statistical obsamat 1Tu€ Positive. If not, then we have a False Negative. Conside

of the values taken by portions of the payload. instead a flow which is not an eMule flow according to the

For the decision process, any machine learning techniq?f@de- Ifthe_ flow is classified as an eMule flow, the_n we have
can be adopted: in this paper we focussupervised learning & False Posmve. If n_o?,_then we have a True Negative. Table |
algorithms[6], in which a training set composed of knowrSUmmarizes the definitions.
traffic is used to build a model; the model is then used during The corresponding percentages must be evaluated as
the classification task. Given a geometric representation o. False Positive Percentage (%FP) is the percentage of
features in a multidimensional space, during the trainimase, negativesamples that were erroneously reported as being
labeled samples are used to identify and to define the “vdlume  positive:
in which samples of the considered class fall into. During th
classification process instead, the sample to be class#igtbh %EFP = 100 P .
be labeled with the most likely class according to the volitme Total Number of Negative Samples’




/_\ The process of the format extraction is achieved by using
G groups

e a simple Chi-Square like test. The test originally estirnate
ETHERNET - the goodness-of-fit between observed samples of a random
IP  (ip_src, ip_dst) = variable and a given theoretical distribution. Assume that
UDP (port_src, port_dst) = K =2 possible outcomes of an experiment &falifferent values and
ret N byt = counters Oy, are the empirical frequencies of the observed values, out
e byes P of C total observationsX’, Oy = C). Let Ej, be the number
- of expected observations &f for the theoretical distribution
Ey, = C - py with p; the probability of valuet. Given thatC'
S is large, the distribution of the random variable
s - [ X1, X5, X5, - Xg] K )
G groups of b bits signature (O}C — Ek)
x=3 2B ®
. . . k
Fig. 1. Scheme of signature extraction process. k=1

that represents the distance between the observed empiri-
cal and theoretical distributions, can be approximated by a
» False Negative percentage (%FN) the proportiopas- chj-Square, ox?, distribution with K — 1 degrees of freedom.
itive samples that were erroneously reported as negatiyg:the classical goodness of fit test, the values fare
FN compared with the typical values of a Chi-Square distrithute
random variable: the frequent occurrence of low probabilit
values is interpreted as an indication of a bad fitting. In&IS
« True Positive Percentage (%TP) is 100-%FN; we build a similar experiment analyzing the content of gup
« True Negative Percentage (%TN) is 100-%FP; of bits taken from the packet payload we want to classify.
Indeed, if there are 100 eMule flows and the classifier missesChi-Square signatures are built fratreamsf packets. The
10 of them, we have %FN=10% (%TP=90%). Similarly, ifirst N bytes of each packet payload are divided i6Gtgroups
there are 500 non eMule flows and the classifier returns all @f b consecutive bits each; a groygpcan take integer values
them as eMule, we have %FP=100% (%TN=0%). in [0,2° — 1]. From packets of the same stream, we collect,
Finally, results are often expressed by means@bafusion for each groupg, the number of observations of each value
Matrix. In the field of artificial intelligence, a confusion matrixi € [0,2° — 1]; denote it byOEg). We then define a window
is a visualization tool typically used in supervised leami of C packets, in which we compute
Each column of the matrix represents the instances in a

%FN = 100

Total Number of Positive Samples;

2
predicted class, while each row represents the instancas in 21 (Ogg) - EZ(Q))
actual class. One benefit of a confusion matrix is that it &/ea Xg = Z T g® )
to see if the system is confusing two classes (i.e., commonly =0 i
mislabeling one as another). and collect them in the vector
X:[leXQa"'vXG] (3)
. KISS

which is the KISS signature. Fig. 1 shows a schematic repre-
sentation of the KISS signature extraction.

A traditional DPI classifier inspects packet payload logkin One possibility to characterize a given protocol is to es-
for deterministic patternssuch as particular strings which ardimate the expected distributio{]Ei(g)} for each groupy,
compared to those in a signature database. The processmfthat the set of signatures are created by describing the
defining the signatures is a complex task that requires a despected distribution of the protocols of interest. Durthg
knowledge of the protocols that need to be identified. As suatiassification process then, the observed grguistribution
any changes in a protocol can invalidate the signature,fwhi{:OEg)} must be compared to each of tI”{eEi(g)} in the
becomes outdated and must be redefined manually. database, for example using the Chi-square test to select th

The goal of KISS is instead t@utomatically discover most likely distribution. However, this process ends up in a
application layer header formatvithout caring about specific complex process in which Eq. (2) must be computed for each
values of the header fields: we aim at automatically let throtocol of interest.
protocol format emerge. Since UDP is a connectionless proto In addition to the high complexity, the comparison with
col, the first bytes of the payload of each UDP packet typjcalteference distributions fails when the application protoc
contain an application layer protocol header whose fields cacludes constant values which are randomly extracteddoh e
be constant identifiers, counters, words from a small dietip flow. For example, consider a randomly extracted “flow ID”
(message/protocol type, flags, etc), or truly random valuesgroupg. Consider two flows, one used for training and one
(coming from encryption or compression algorithms). Theder testing, generated by the same application. Let thaitrgi
coarse classes of fields can be easily distinguished thraugfiow packets take the value 12 in groyp Let the test flow
simple statistical characterization of the values obskinea packets take instead the value 7 in the same group. Clearly,
sequence of packets. the comparison of the two observed distributions does nsg pa

A. Feature Extraction



the Chi-square test, and the test flow is not correctly diassi 160 [———(g=2)emule ]  1200f
as using the same protocol as the training flow. 140 :%(g Jemue |l

For the above motivations, we propose to simply check 159
the distance between the observed values and a referenceaoo
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distribution, which we choose as the uniform distribution,x, 8o }l'\,\ @=20ns | @ 600 DRS X
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In other terms, we use a Chi-Square like test to measure the ° ~ ] O,
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source entropy.

To give the intuition of how Eq. (2) evolves versuys,
consider the. case in which a Qet.ermlnlstlc group of bits Fy. 2. Evolution in time (left) and dispersions in spacelt) of X of two
observed. Since for a deterministic group only one value dggups of 4 bits extracted from the second byte of UDP pagoad

possible, the value ok, becomes:

tramlng
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Chunker signatures Sampler 4’. sets

2
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E Fig. 3. Schematic representation of KISS learning steps.

Thus, X, linearly increases witt{'.
In general, for a block in whiclg bits are constant, it can
be shown that same protocol class are not identical. This is due to both the
_ bo bo. 2 behavior of each application and to different implemenotadi
Xg = C (2 B 1) 27X ") of the same protocol. For example, some eMule clients can be
where x? is the Chi-Square witd degrees of freedom. In downloading, uploading, or waiting, therefore exchanglifg
this case, A = 20=%0 — 1. ferent types of messages. Similarly, different implemtoites
To provide an example of the evolution &f, left plot in  of a DNS server can use different random number generators
Fig. 2 reports the value of two 4-bit long groups belonging extract the query identifier. It is the scope of the dedisio
to two streams of two different traffic protocols, namely DN$rocess to define the areas where points of the same protocols
and eMule, versus the number of collected packetsThe are expected. Intuitively, different protocols fall in faifent
steep lines corresponding to groups taken from the eMueeas that are clearly identified and easily separable: plsim
stream refer to fields that are almost constants. In this, casgaight horizontal line can effectively separate the tagions
the longer the experiment is (largé, the larger the distance considering this example. However, when several protca@as
from the uniform distribution is, i.e., the bits are far frontonsidered, more complex surfaces have to be found.
being uniformly distributed. In the same plot, observe the
lines referring to DNS traffic. The lowest one has a very slow
increase withC', its behavior is almost perfectly random, the>" Decision Process
values of X3 being compatible with those of a Chi-Square KISS is based on supervised machine learning decision
distribution. The bouncing line, instead, correspondshe tprocess. During the training phase, we operate as sketohed i
typical behavior of a counter. In fact, Eq. (2) over consizeut Fig. 3. We start by considering some streams that belong to
bits of a counter, cyclically varies from very low values @vh the set of applications we want to model. Streams are then fed
all the values have been seen the same number of timesjnt@ a chunker whose role is to derive the KISS signatures
large values. The periodicity of this behavior depends @n ths in Eq. (3). The signature set is randomly sampled by the
group position inside the counter. sampler so as to select theaining set whose size will be
While randomness provides a coarse classification over indiscussed in Sec. V-E. The training set is then fed to the
vidual groups, by jointly considering a set@fgroups through learning system, after which the KISS model is produced. In
the vectorX the fingerprint becomes extremely accurate. Olbhis paper, we investigate two different learning systeths,
serve right plot in Fig. 2. Each point in the figure correspondirst based on Euclidean distance and the second based on
to a different stream. A window of' = 80 packets is used to Support Vector Machines (SVM).
derive the signatures using the couple of featrés, Xs) as
coordinates. Points obtained from DNS streams are displace 1) Euclidean Decision ProcessA simple Euclidean dis-
in the low left corner of the plot; points from eMule are spieatance is used for the decision process. A set of hyper-sphere
in the top part of the plot. Notice also that signatures of ttane for each protocol, is identified to define the areas in whic



samples of each class are expected to fall. The classificatise consider real traffic traces, collected from an operative
process is then straightforward: a point that falls inside tatally uncontrolled network. In addition, to evaluate fer-
sphere is classified according to the protocol associatedféomance of KISS when dealing with new protocols, we also
that sphere, while a point that does not fall into any sphereselected, as a case study, P2P-TV applications. IndeedF2P-
assumed to be of amnknownprotocol. systems have been recently introduced and they are starting
For a given classi, the representative hyper-sphere is fullyo became popular. These applications rely on proprietary
defined by its centerX(A) and its radiusp(A). X(A) is design and protocols, they preferentially use UDP as tramsp
simply computed, component by component, as the arithmapiotocol, and they are expected to offer a large amount of
mean of each signature in the training set of claissThe traffic to the network; thus, their classification is goinghe
identification of the radius is more complex. Indeed, théhe more and more important.
hyper-sphere should be big enough to include all the points o .
of the training, but it has to be small enough to avoid tf- Classification Objects
include samples of other classes. Using machine learning/MVe consider the scenario in which a network provider or
terminology, one wants to maximize thieue Positiveratio administrator is interested in knowing the traffic that isngp

while minimizing theFalse Positiveratio. to or coming from a set of internal hosts. In this context, we
Formally, the following equation can be used to state thdefine a classification entity as
problem: « flow if all packets are coming from the same source

IP address and UDP port and are going to the same
destination IP address and UDP port;

« endpointif all packets having the same IP destination
(source) address and UDP destination (source) port.
ndeed, depending on the application, one can be inter@sted
identifying a single flow (as in the case of a VoIP stream), or

2) SVM Decision ProcessSVM are a set of supervisedin detecting an endpoint and therefore all packets seriired

learning methods used for classification and regressios. ﬁr'om it (as in the case of a P2P application).
key idea of SVM is to displace the training samples (by meags Testing Datasets
of a transformation from the original N-dimensional spaza t

possibly infinite-dimensional space) so that samples loghon ;
to different classes can be separated by the simplest eurfA%Cted from the network of FastWeb [.12]'. an ISP prowqier that
IS the main broadband telecommunication company in Italy,

e, an hyper-plane. SVMs exhﬂ_:nt a number of advantag(? offering converged services, in which data, native VoIP][13
* The_y are rObUST[ fo the training set 5|ze_and CompOSItIOQnd IPTV services share a single broadband connection. The
* Thglr com_putanonal "’”?‘?' memory requwemgnts are Vephstweb network is a very heterogeneous scenario, in which
limited during the classm_canon phase, gve.n if the W&y sers are free to use the network without any restriction. It
phase can .be computf’;\tlonglly EXPENSIVE, therefore represents a very challenging scenario for draffi
« They ex_h|b|t a very high d|§cr|m|nat|pg POWET, S0 thaI:Iassification. A probe node based on high-end PC running
they typ|cally achieve very high C'?‘?S'f'ca“on aCCUracy inux has been installed in a PoP located in Turin, in which
* _There IS a _Iarge number O_f efficient alg_onthm_s an_lﬁmre than 500 users are connected, using more than 2000
implementations already avaHabIg. In partlculgr, in th'aifferent IP addresses (e.g., VoIP phones, set-top-b®@s,
.paper We_ adopted thiel BSVM[10] |mplement-aF|on. etc.). All packets entering/leaving the PoP have been cagtu
~ Finally, notice that the output of the SVM training phasghe measurements presented in this paper refer to two tatase
is a definition of a number of regions equal to the number @iyt e call RealTrace-I and RealTrace-Il, collected in @00
classes defined during the training phase, e.g., one for eagly 2007L.
protocol that is offered during the training phase. Thisliegp Both traces contain many popular applications generating
that a sample will then always be classified as belonging {gHp traffic, in particular we selected: i) eMule and Bittarte
one of the known classes. Considering traffic classificatiof \gip (over RTP) and iii) DNS protocols. Indeed, these
an additional region is needed to classify all samples that ghyee protocols account for more than 80% of UDP endpoints,
not belong to any of the given protocols, i.e., to represegrresponding to 95% of the flows and to more than 96% of
unknownprotocols. Thus, the training set must contain tWehe total UDP volume. In the remaining traffic, nearly 2% of
types of signatures: i) the ones referring to traffic gemeratfiows are related to BitTorrent accounting for less than 1%
by the applications to classify; i) the ones representihtha o pytes. Skype communications instead present the typical
remaining traffic. We refer to this second classBagkground mijce/elephant behavior since a negligible number of flows
since it represents the set of applications that we cann@lount for more than 1% of the total volume in both traces.
classify or are not interested in classifying. Being dated back to 2006 and 2007, no P2P-TV traffic is
present.

p(A) = argmax (%XTP(p) ~%FP(p))  (8)

Recall that%T P(p) is computed considering samples of

class A, while %F P(p) is computed considering samples oi
all other classes of the training set.

Real Traffic TracesReal traffic traces (RealTrace) were col-

IV. TESTING DATASET
. . . - 1Due to a NDA, we are not allowed to show results referring toamecent
We aim at assessing KISS performance in the most dmw%ces. Nonetheless, we can affirm that this trace is repase of typical

scenario, whenever possible. For most of the results we,shevgs performance.



TABLE I - .
DESCRIPTION OF THE DATA TRACES protocols, we developed a DPI classifier that was explicitly

_ ‘ designed. It was implemented in Tstat [7], and its perforcean
Bytes | Packets| Flows | Endpnts| Time period | were manually fine tuned and double checked. In particular,

RealTrace-1| 53.13G | 32IM | 18.25M | 1.72M | 22h, May '06 . _
RealTrace T 31336 | 133M | 525M | L02M | 1zh Jun"o7] DF! rules can be summarized as follow:

P2Ptrace| 10.25G 14M 132K | 485K | 3h, Apr ‘08 « DNS: we rely on simple port-based classification and
Skype | 3.7G | 24.7M 966 559 | 96h, May 06 a manual inspection as to identify only the flows with
respect to DNS RFC1035;

~« RTP/RTCP: we rely on the state machine described
P2P-TV Traces:To assess the performance of KISS with iy [13]. It combines a DPI signature and correlates the

P2P-TV traffic, we selected, among the available P2P-TV  yajue of the fields in consecutive packets (e.g., to check
applications, PPLive, Joost, SopCast and TVants. Since non  the validity of the counters).

of the selected applications was available at the time df rea, emule/BitTorrent: we developed a DPI classifier based
traffic trace collection, we are forced to rely on testbed P2P  gp [15], [16] adapting it to the considered scenario.

TV traces, called P2Ptrace, to assess the performance &KIS , Skype: we rely on the Bayesian framework described
This dataset of traces has been collected in the context of i [2].

Napa-Wine [14] project, in which a large scale experimerg wa. 5| ihe aggregated traffic that do not match any of the rules

organized to observe the performance of the above mentiorilg?”aced in a sub trace call®hckgroundsince it represents
P2P-TV applications. The resulting dataset consists olk¢taca" the Unknownprotocols

level traces collected from more than 45 PCs running P2P-gjy o the oracle itself can be unreliable, accurate manual

v _ap_pllcanor?s dm 2 d!ﬁelregt Countnes,” at 31]: d'ﬁemrenFnspection and pinpointing of suspect cases are detailéfkin
institutions. The dataset includes traces collected fr@8 P ot ance rosults,

Campus LANs, Corporate networks with restrictive policies
home ADSL connections, so that both nodes with public and
private IP addressing are present. We are therefore confiden
that the heterogeneity of the P2Ptrace dataset is repagisent A- Real Traffic Traces
of a wide range of different scenarios. We first report results considering a small subset of the
Skype Tracesin the tests, we also use the public availRealTrace-| dataset, corresponding to the first 1 hour &fdra
able dataset for the Skype traffic [11]. The dataset contaifibe oracle is used to split the trace into 4 sub traces: each
both Skype traffic identified in [2] and traces collected in aub trace includes only packets classified as belonging to
controlled environment using PCs running different varsio the same protocol, i.e., RTP, eMule, DNS and Background
of Skype and different operating systems such as Windovigffic only. Each trace is fed to the KISS classifier, so that
Linux and Pocket-PC. signatures are evaluated. Both SVM and Euclidean decision
Tab. Il summarizes the previously described datasets gprcesses are trained using 300 signatures for each cldss an
reports the total amount of bytes, packets, flows and entipoithe remaining signatures are used to assess the performince
for each dataset and the collection time and duration of ea€lSS. Recall that a signature is generated evérsamples, so
trace. that a flow/endpoint can be classified several times (i.eryev
We assume packets belonging to the same flow/endpointpackets).
are exposed to the KISS engine, so that after digestingTab. lll summarizes the results. Each row corresponds to
C packets, a classification decision is taken and a newclass of traffic according to the oracle. The second column
observation window begins. Therefore, several classifinat reports the total number of signatures extracted from eabh s
decisions are possibly taken for a single flow or endpoiritace while the remaining columns report the percentages of
In this paper, we consider independent classificationshab tTrue Positives and False Positives for both Euclidean ard SV
the same flow/endpoint can be classified differently at eadkcision process.
window. Notice that some reconciliation algorithm can be The SVM results are astonishing: the True Positives are
easily designed to increase the accuracy of the classificathlways higher than 99% while False Positives are negligible
by considering the set of classifications involving the saniéhe performance of the Euclidean classifier are more varjabl
flow or endpoint, e.g., adopting a majority criterion. Weviea e.g., it performs very well for RTP but the accuracy decrsase
this issue to future work. when considering eMule and DNS protocols. This is related
Notice that i) no assumption about observing the first set tsf the adoption of an hyper-sphere as an approximation of
packets is stated; ii) there is no need to observe bidineatio the separation surface between classes. To this extent4Fig
streams of packets; and iii) not all packets belonging to thieports Eqg. (8) as an examples of optimization for RTP, eMule
same flow/endpoint must be exposed to the classifier; pessishd DNS. For RTP, any choice gl RTP) € [12.2,28.0]
packet drop, reordering, sampling can be present. allows to almost perfectly identify RTP traffic. On the canty,
eMule class is not well represented by the hyper-sphere sur-
L face, so that any choice pfeMule) trades between %TP and
C. The Oracle Definition %FP. Similar reasoning applies for DNS traffic. This shows
To obtain the ground truth from aAggregatedtrace, i.e. that a simple decision process based on Euclidean distance i
a traffic trace with a mixture of communications of differenhard to design, while the adoption of SVM allows to avoid

V. RESULTS



TABLE Il TABLE IV
EUCLIDEAN AND SVM PERFORMANCE ONREALTRAFFIC TRACES CONFUSION MATRIX CONSIDERINGP2P-TV APPLICATIONS
Euclidean SVM Tot. Joost PPLive SopCast TVants Agdr.
Tot. %TP  %FP| %TP  %FP Joost | 33514 | 98.1 _ N 1.9
RTP | 8386 | 99.9 -] 99.9 - PPLive | 84452 - 100.0 - -
eMule | 1527 | 84.3 0.12| 99.3 - SopCast| 84473 - 99.9 - 0.1
DNS | 8245 | 91.3 -1 99.9 0.01 TVants | 27184 - - 100.0 -
Backg | 2579 | 99.1 531| 99.6 0.15 Agar. 1.2M 0.3 99.7
1 R -
F— L\ RTP _E_ 90 T T T T T T
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Fig. 4. Euclidean Decision Process: True Positive - FalsgtiP® evolution Fig 5. False Positive percentage variation versus timek@aund in the
of versusp for RTP, eMule and DNS classes. training set.

this problem. This conclusion is supported by other tests Vf’r%ining set includes samples extracted from the first 30

performed, not reported here for the sake of brevity. Tioeeef minutes only. As in experiment V-A, only RTP, eMule, DNS

in the_fo!lowing we will consider only the SVM classifier andand Background are considered in the SVM model. Results are
we wil mvestlggte how I_<ISS performgnce are affected bP’eported in Fig. 5 showing only Background False Positive
parameters setting and different scenarios. percentages since the %TP is always higher than 99%. The
plot confirms the intuition that the characterization of the
Background traffic may be a problem, since there are peaks
that clearly show that the SVM is fooled by the sudden
appearance of unknown protocols that were not included in

B. P2P-TV traffic traces

To prove the KISS flexibility, we explore its ability to
identify traffic generated by P2P-TV applications. The dgasi o
and engineering of a DPI mechanism for proprietary arJfHe tramllng .set. ) )
closed P2P-TV applications would be daunting and extremely!nvestigating further, we notice that the high percentage o
expensive. On the contrary, training KISS is quite strdight Background traffic classified as RTP traffic is due a single
ward: a packet trace is captured by simply running the targ%gdpomt which is receiving traffic with the same “format”
application and then it is used to train the SVM. RealTrace9f RTP protocol. However, the DPI based oracle did not
instead is used as Background class. In this way, all tracd@ssify this endpoint as RTP, since a mismatch in the RTP
from the P2Ptrace dataset are used to evaluate %TP wiigader is present. the RTP version field takes a values of 1
RealTrace-| is instead used to evaluate the %FP, since Wétead of 2. Apart from this difference, all othe_r fields are
assume no P2P-TV traffic could be present during 2006. TiePerfect agreement with the RTP standard as in RFC3550.
total amount of time required to complete this task is less thMoreover, all packets received by this endpoint have 172B
6 hours. of UDP payload, which is typical of VoIP streams using the

Results are summarized in Tab. IV, which reports perceff-U-T G-711 encoder [13] used in the FastWeb network. We

ages computed over more that 1.2 millions of tests. Labden claim that this is aactual RTP flow, but the DPI oracle
on the rows represents the ground truth. Also in this cass fooled by the wrong version value. On the contrary, KISS
results are amazing. KISS is able to correctly classify mof@rectly classifies this flow as a RTP flow.

than 98.1% of samples as True Positives in the worst case an§imilarly, investigating the samples that are misclagsifie
only 0.3% of False Positives are present. as DNS (e.g., from 15:30 to 16:00) we notice that a single

endpoint (listening to UDP port number 9940) is the only

) responsible for this behavior. We manually inspected this

C. Signature Robustness traffic and verified that it cannot be a DNS endpoint, so that

We are first interested in quantifying KISS robustnedfe oracle is reliable. Interestingly, no sample of thispmidt

respect to a training set independent from the test set. W tlis included in the training set of Background traffic. Since

perform an experiment in which the SVM is trained usinthe SVM is always forced to classify the sample as one of

samples extracted from the initial part of the RealTracethe possible classes, it resolves to classify it as DNS rathe
A 9-hour long subset of RealTrace-l is considered, but thlean Background. Considering this endpoint only, Fig. 6xsho



D. Training with the Aggregate

2> 8:3 L ] A possible weakness of KISS is that the SVM must be
5 o7 1 trained with the Background traffic, i.e., with actual treuix-
B g'g I | tracted from the network the classifier is used represeitiag
; 04} 1 Unknownprotocols. While the adoption of actual traffic does
o 82 I Prob (backgroundy—— | _not pose part_icular issues, th_e extract_ion of “p_ur_e” Baqklgld
01l Prob (DNS)----- 1 s very questionable. A possible solution to this issue isge,
0 L™ . O during the SVM learning phase, the whdggregateof traffic
0 100 200 300 400 500 asUnknowntraffic. This poses some problems, since samples
Time [sample index] of a given class may be part of the Aggregate traffic as well.

Fig. 7 shows results obtained by running KISS in the
Fig. 6. Example of an endpoint that causes False Positivéerént Scem:mo preV|0ust described, but us_lng the_Aggregatmtra
classification windows over time. to train the SVM for the Unknown traffic. Also in this case the
True Positive percentage remains higher than 99% (reqdts a

not plotted for the sake of brevity). Considering FP, apamtrf

Zg L ' ' i ' RTP —5— | the RTP endpoint that the oracle misclassifies, we observe
eMule —— an increased percentage of samples being classified as eMule
(with an average %FP=4.5%). Nonetheless, results remain

very good.

% False Positives

E. Training set size

0o Similarly, it is interesting to observe how performance
10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 changes with training sets of different size. Results anétqud
Time in Fig. 8, which reports the %TP and %FP for increasing
training set size with confidence intervals evaluated ower 1
, » o ) ) independent tests and accuragy= 0.5. The plot shows
Eghiz'g seFt"_"lse Positive percentage variation versus timeyrégate in the  y o «|SS classifies RTP, DNS and eMule correctly starting
from a training set size of only 25 samples (worst case is
%TP>91.73% for DNS) but at least 75 samples are needed

. . to obtain excellent results. Also in this case, the correct
the probability that the SVM evaluates it as a Background Q.

. fa\ssification of the Background traffic is more problematic
DNS sample versus time. It can be seen that some uncertain o :
S|E/ce the False Positive percentage is smaller than 5% only

Is present. Repeating the experiment by including some (@ en the training set comprises at least 200 samples. The

AU i - W
these endpoint signatures in the Background training SSS,K intuition behind this is that the Background traffic is far m@o

correctly classifies it. This is an example of “under-tragfi heterogeneous with respect to traffic of a given protocoland

of SVM ) ) L larger number of samples are required to accurately describ
Similar conclusions can be drawn investigating the eMulg

False Positives. They all correspond to endpoints listghin
UDP port number 3074, possibly related to the Xbox-Live
protocol, which is sometimes confused by the SVM as eMufe Training with many classes
traffic, since the SVM is “under-trained”. Also in this cabg, All the results reported so far consider only 3 or 4 pro-
adding some samples of these endpoints to the training@ettécols. It is interesting to analyze the performance of the
FP is detected. classifier with a larger number of target protocols. Using
We can conclude that KISS shows excellent performandeealTrace-1l, P2P-TV testbed and the Skype datasets weecrea
since in all cases the True Positive percentages are higheKISS model including nine different classes, plus one for
than 99%. The training of the SVM is robust considerinthe Background traffic. Each class has been characterized
the signature of known protocols, but it can suffer whewith 300 signatures randomly chosen from the initial partio
the Background training set is small or does not includef each trace. Tab. V reports the confusion matrix of the
all protocols that may be present in the considered netwarlassification result. As before, labels on the rows reprsse
scenario. This leaves room for improving the performance tife ground truth. The first column reports the total number
KISS by carefully selecting the training set samples. Notiof signature, while the other columns show the agreement
that the accuracy of any supervised machine learning @ecisbetween the ground truth and KISS classification. Again,
process is strongly affected by the coverage and accuracyr@dults are impressive: KISS always achieves more than 99%
the training set. Intuitively, a limited or outdated traigiset of True Positives, with less than 10% of False Positives from
performs worse than an updated one. A discussion of ttlee background class. Further analysis revealed that 7.59%
training set size and its impact on performance is presdntedf the false eMule samples are related to a single endpoint,
Sec. V. which generates lots of short flows directed to an high number



e a8 8 2 N = 12. Givenb = 4 this values corresponds 6 = 24
groups. Another reason to choo3e= 12 bytes is that, this
way, we collect 20 bytes of the IP packet payload (12 bytes

%?;ZSLE+ {1+ 8 bytes of the UDP header) that is the minimum size of the
> %TP DNS —e— TCP header and the typical value used by measurement tools.

YFP —>—

Notice that the optimal value oV depends on the targeted
1 applications. For example, DNS and eMule can be clearly
Y R B e, S P ST S 4 identified by only considering X,, X3) as early showed
5255075100 150 200 300 400 500 In Fig. 2. However, when considering different protocols,
Training set size possibly more and different groups must be considered. The
selection of which is the best set of groups to include in the
signatureX is then a complex task that is left out as future
Fig. 8. Classification accuracy versus training set size. work.
Packet window, C = 80. While we would like to keep the
packet window as small as possible, the estimation of the ob-
served distribution is considered to be statistically gigant
if the number of samples for each value is at least 5. Having
60 | e o 1 chosenb = 4, in order to haveE; = C/2" equal to 5, we
%TP DNS —o— needC to be equal to about 80.
WFP However, since in KISS we are not performing a real Chi-
square test, we are interested in the impact of smaller saltie
C, which would allow an earlier classification. Fig. 9 reports
16 32 48 64 80 96 112 the True Positive percentages of well-known protocols and
C [packets] the False Positive percentages, without distinguishingram
protocols. Confidence intervals with an accuracy 0.5 are
evaluated over 250 different sub-traces from RealTraeadh
Fig. 9. Classification accuracy versus signature packetiownC. comprising more than 100 samples. The Figure clearly shows
that the %TP is almost not affected by the number of samples

of different destinations. Unfortunately, we were not atsle that are considered to evaluate the observed frequencies in

identify which actual protocol was used. After the addinEq' (1). Indeed, the format of the considered protocols iy ve

. o - different and the SVM has little problem in distinguishing

of some samples of this endpoint in the background tra|n|n|g P .
o ) tHem even ifC is small. However, the %FP is much more

set, all eMule False Positives disappeared. For what concer nsitive toC. and only forC' > 80 it qoes below 5%

the 2.67% of samples identified as RTP, more than the 90%% ' y 9 '

of them is generated by only two endpoints that use a RTP

protocol with wrong version number as previously discusséé Coverage

%

in Sec. V-C. The packet window siz€' plays an important role in KISS
design and it may affect the applicability of KISS. Indeed,
G. Parameter Selection And Tuning given the connectionless characteristic of UDP, one espect

. . . that UDP flows and endpoints last for few packets. Fig. 10

The signature creation approach previously presented is .. T . ) .
. onfirms this intuition reporting the Cumulative Distribmr

based on a number of parameters whose setting may be

critical. These are the criteria we used to set them: uhction (CDF) of flow length for both flow/endpoint pack-
Bits ér roup. b — 4. The choice of should trade-.off Wo ets and bytes. All incoming UDP traffic in RealTrace-l is
o oF;itegneeg,s (Sn t'he one hand. we would like be the considered to derive the CDF. The left plot clearly shows
pp ’ : ’ . . _that 40% of flows and endpoints has only 1 packet, while
closest as possible to typical length of protocol f|elds;:e5|n0 ly 0.2% of flows and 5% of endpoints have at least 80
protocols dialogs are usually based on words whose Ien%t?l : : .
. ltiole of the bvte or. sometimes. is half of a bvie ackets. However, these flows/endpoints respectivelywadco
'S mutip Y ' ! Y% for more than 93.8% and 98.6% of thgtescarried by UDP
should be 4 or 8 or a multiple of 8. On the other hahd, ' ' :

should be small enough to allow that the packet winddw as reported m_the right plot. Th|_s_ cle_arly shows t_hat, while
. . . - S KISS is not suitable for the classification of short lived UDP
over which the Chi-Square test is statistically significamot

too large. Beside, in this case streams can be classified eprg\r/]vs/endpomts, it can however successfully target thellsma

if they are not too long, they are classified in short time aqg?] Ct{ﬁcegfffg\?v? that generate the majority of the traffie, i
live classification is possible. Thus, we chdse 4. 9 '

Number of bytes per packet, N = 12. In general, clas- )

sification accuracy increases with the number of consideredComplexity

bytes per packet. However, complexity of the classification KISS has limited computational complexity. In terms of
tool increases also withV, in terms of both memory and com-memory,2° counters are needed per group, giving a total of
putational complexity: as a convenient trade-off, we cleoos - 2° counters for each tracked stream. Considering bytewise
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TABLE V
CONFUSION MATRIX CONSIDERINGP2P-TV, REAL-TRACES AND SKYPE TRAFFIC

Tot. BitTorrent eMule RTCP RTP DNS Skype SopCast TVAnts PPLive ckga
BitTorrent 1268 100 - - - - - - - - -
eMule | 57255 0.02 99.15 - - 0.03 - - - - 0.8d
RTCP 2407 - - 99.96 - - - - - - 0.04
RTP | 585647 - - - 99.79 - - - - - 0.21
DNS 2707 0.46 - - - 99.54 - - - - -
Skype | 46600 - - - - - 99.61 - - - 0.39
Sopcast| 83460 - - - - - - 99.95 - - 0.05
TVAnts | 25748 - - - - - - - 99.69 - 0.73
PPLive | 27278 - - - - - - - - 99.24 0.76
Backg | 84273 0.27 7.59 - 2.67 0.22 - - - - 89.25
1 e 1° ~ ~ ; Payload-basedtechniques [9], [18], [19], [20] inspect the
ﬁ 0.9 " 1 content of packets looking for distinctive signatures tisiw
§ 0.8 / c=80 g c =80 4 to recognize a given application. All DPI techniques fall in
5 07 / / =107 this class.
— <] . . . .
g 06 / E Machine-learning-basedclassification [5], [21], [22], [23],
é 0.5 o [27], [28] rely on the rationale that, since the nature of
. 0.4 '-D'-lO'2 the services is extremely diverse (e.g., Web vs \olP), the
o) 03 ' © : corresponding generated traffic is very diverse as well.,(e.g
02f Endpoint —— 1 Endpoint —— short-lived bursts of big packets versus long-lived, canist
01 ‘ ‘ ‘ 10° ‘ ‘ ‘ bitrate flows of small packets). This class of work stems
1® 100 12 10° 1¢t 1® 100 12 108 1¢t nat p ) . ) .
from the characterization and modeling research field, whic
Flow Length [pkts] Flow Length [pkts]

started from pioneering work [29]. Initial work in this area
focused on the offline traffic classification, exploring whic
Fig. 10. CDF of the flow/endpoints length in packets (on ti8,land bytes lOW properties and which classification technique was best
(on the right). The vertical line is in correspondence of 8@kets. suited to discriminate traffic flows according to the differe
classes of applications [5], [21], [22], [23]. More recentl
[27], [28] addressed the problem of “early” classificatioh o
counters,G = 24 andb = 4, 384 Bytes are required for eachindividual applications, basing solely on information suas
flow, i.e., a Gigabyte of memory allows to track more thathe size, direction (and inter-packet gap in case of [28}hef
2.7M of streams. very first packets of each flow: the initial handshake phase of
The computation complexity of updating A signature different applications is distinctive and can be used asopw
involves G = 24 increments for each packet. Once everfingerprint (e.g., SMTP handshake is different from HTTP
C = 80 packets, the signature is computed. The cost of thime).
computation isO(G - 2°) multiplications, see Eq. (2). Finally, Behavioral-basedclassification [4], [24], [25] tar-
The computational complexity of the SVM decision corget the classification of Internet hosts on the sole basitef t
responds to some products between vectors, i.e., it hasransport layer traffic patterns they generate (e.g., P2#sho
complexity ofO(G - M) multiplications, beingl/ the number contacts many different hosts typically using a single jport
of classes. Using thel BSVMlibrary it takes around 10@s whereas a Web server is contacted by different clients with
to classify a signature from empirical measurements on afultiple parallel connections).
Linux system with an Intel(R) Core(TM)2 T8300@2.40GHz. Qur work aims at fine-grained classification of Internet
Considering a single UDP flow, KISS can roughly classififaffic. As such, we consider work targeted to host identifi-
8-10° packets/s; thus, on-line classification is possible for gtion [4], [24], [25] or to coarse-grained identificatios],[
256Mbps stream of minimum-size UDP packets, even witR1], [22] to be not suited as a comparison for our purpose.
no code optimization or parallelization. Moreover, this work aims at filling a gap in the current Inetrn
classification spectrum, specifically addressing UDP traffi
classification. Since UDP is a connectionless protocol, we
argue that approach such as [27], [28] cannot be applied as
Since Port-based classification [1] has become unreliableno handshake can be reliably identified in this case. Indeed,
a number of different solutions and methodologies have beeven the notion of “flow” is fuzzy considering UDP streams.
proposed to classify Internet Traffic [4], [5], [9], [17], §1, Works closest to ours are those that belong to the payload-
[19], [20], [21], [22], [23], [24], [25]. Classification eriges based class. However, our work is very different from [9],
can be coarsely divided into three categories, each of th¢b8], since the definition of application signatures doe$ no
exploiting different ideas. For a good survey see [8] whileely on any reverse engineering of the applications. lustea
[26] is a complementary work for the survey. our approach is more similar in spirit to [19], [20], in which

V1. RELATED WORK



authors automate the extraction of signatures from thei-applo]
cation payload. Both [19], [20] rely on signatures extrdcte
from the beginning of each data stream (more specifical[)l/,l]
the first 64—-256 bytes). We remove this assumption, so thsd]
the classification can start at any point in a flow. This is d#3l
important difference, since, for example, it opens the door
adopt packet sampling to cope with the ever increasing lifda]
data rate.

Another significant difference consists in the technique
used to express the payload fingerprint:;[19] uses discrgte b[15]
encoding, whereas the framework of [20] proposes the usel
different models of increasing complexity. Another difface
consists in the technique explored to perform the classifica [17]
indeed, in this work we use Support Vector Machines (SVM)
which, to the best of our knowledge, has not yet been dee@g]
tested in the context Internet traffic classification.

VII. CONCLUSIONS [19]

We presented KISS, a novel classifier explicitly targeting
UDRP traffic that couples the stochastic description of aapli
tion protocols with the discrimination power of Support tac [20
Machines. Signatures are extracted from a traffic strearhdy t
means of Chi-square like test that allows application protto
format to emerge, while ignoring protocol synchronizatam
semantic rules. A decision process based on Support Vector
Machine is then used to classify the extracted signaturé®]
leading to exceptional performance.

Performance of KISS has been tested in different scenarios,
considering both data, VolIP, traditional P2P applicatiand [23]
novel P2PTV systems. Results are astonishing. The average
True Positive percentage is 99.6% and less than 1% of Faisg
Positives are typically detected. Moreover, KISS is vetyust
to internal parameter setting and it is efficient both coasidy
memory and computational requirements.

]

[21]

[25]

[26]
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