
Kiss to Abacus: a comparison of P2P-TV traffic
classifiers

Alessandro Finamore1, Michela Meo1, Dario Rossi2, Silvio Valenti2

1 Politecnico di Torino, Italy
2 TELECOM Paristech, France

Abstract. In the last few years the research community has proposed several
techniques for network traffic classification. While the performance of these meth-
ods is promising especially for specific classes of traffic and particular network
conditions, the lack of accurate comparisons among them makes it difficult to
choose between them and find the most suitable technique for given needs.
Motivated also by the increase of P2P-TV traffic, this work compares Abacus,
a novel behavioral classification algorithm specific for P2P-TV traffic, and Kiss,
an extremely accurate statistical payload-based classifier. We first evaluate their
performance on a common set of traces and later we analyze their requirements
in terms of both memory occupation and CPU consumption. Our results show
that the behavioral classifier can be as accurate as the payload-based with also a
substantial gain in terms of computational cost, although it can deal only with a
very specific type of traffic.

1 Introduction

In the last years, Internet traffic classification has attracted a lot of attention from the re-
search community. This interest is motivated mainly by two reasons. First, an accurate
traffic classification allows network operators to perform many fundamental activities,
e.g. network provisioning, traffic shaping, QoS and lawful interception. Second, tradi-
tional classification methods, which rely on either well-known ports or packet payload
inspection, have become unable to cope with modern applications (e.g., peer-to-peer)
or with the increasing speed of modern networks [1, 2].

Researchers have proposed many innovative techniques to address this problem.
Most of them exploit statistical properties of the traffic generated by different applica-
tions at the flow or host level. These novel methods have the advantage of requiring less
resources while still being able to identify applications which do not use well-known
ports or exploit encrypted/closed protocols. However the lack of accurate and detailed
comparisons discourages their adoption. In fact, since each study tests its own algorithm
on a different set of traces, under different conditions andoften using different metrics,
it is really difficult for a network operator to identify which methods could best fit its
needs.

In this paper, we face this problem by comparing two traffic classifiers, one of which
is specifically targeted to P2P-TV traffic. These applications, which are rapidly gaining
a very large audience, are characterized by a P2P infrastructure providing a live stream-
ing video service. As next generation of P2P-TV services arebeginning to offer HD

content, the volume of traffic they generate is expected to grow even further, so that
their identification is particularly interesting for network operators. The two considered
classifiers are the first ones to handle this kind of traffic andexploit original and quite
orthogonal approaches. Kiss [3] is a statistical payload-based classifier and it bases the
classification on the examination of the first bytes of the application-layer payload. It
has already been compared with other classifiers in [4], proving to be the best one for
this specific class of traffic. Abacus [5], instead, is a behavioral classifier, which derives
a statistical representation of the traffic patterns generated by a host by simply count-
ing the number of packets and bytes exchanged with other peers during small-time
windows. This simple approach can capture several distinctive properties of different
applications, allowing their classification.

We test the two techniques on an common set of traces, evaluating their accuracy
in terms of both true positives (i.e., correct classification of P2P-TV traffic) and true
negatives (i.e., correct identification of traffic other than P2P-TV). We also provide a
detailed comparison of theirs features, focusing mostly onthe differences which stem
from the undertaken approaches. Moreover, we formally investigate the computational
complexity by comparing the memory occupation and the computational costs.

Results show that Abacus achieves practically the same performance of Kiss and
both classifiers exceed 99% of correctly classified bytes forP2P-TV traffic. Abacus
exhibits some problems in terms of flow accuracy for one specific application, for which
it still has a high bytewise accuracy. The two algorithms arealso very effective when
dealing with non P2P-TV traffic, raising a negligible numberof false negatives. Finally
we found that Abacus outperforms Kiss in terms of computation complexity, while
Kiss is a much more general classifier, able to work with a wider range of protocols and
network conditions.

The paper is organized as follows. In Sec. 2 we present some work related to ours.
In Sec. 3 we briefly present the two techniques under exam, then in Sec. 4 we test
them on a common set of traces and compare their performance.We proceed with a
more qualitative comparison of the classifiers in Sec. 5 as well as an evaluation of their
computational cost. Finally Sec. 6 concludes the paper.

2 Related Work

Recently, many works have been focusing on the problem of traffic classification. In
fact, traditional techniques like port-based classification or deep packet inspection ap-
pear more and more inadequate to deal with modern networks and applications [1, 2].
Therefore the research community has proposed a rather large number of innovative
solutions, which consist notably in several statistical flow-based approaches [6–8] and
in a fewer host-based behavioral techniques [9, 10].

The heterogeneity of these approaches, the lack of a common dataset and the lack
of a widely approved methodology make a fair and comprehensive comparison of these
methods a daunting task [11]. In fact, to date, most of the comparison effort has ad-
dressed the investigation of different machine learning techniques [6–8], using the same
set of features and the same set of traces.

More recently, a few works have specifically taken into account the comparison
problem [12–14]. The authors of [12] present a qualitative overview of several machine
learning based classification algorithms. On the other hand, in [13] the authors compare
three different approaches (i.e., based on signature, flow statistics and host behavior)
on the same set of traces, highlighting both advantages and limitations of the examined
methods. A similar study is carried also in [14], where authors evaluate spatial and
temporal portability of a port-based, a DPI and a flow-based classifier.

The work presented in this paper follows the same direction of these comparative
studies, but focuses only on P2P-TV applications. In fact, P2P-TV has been attract-
ing many users in the last few years, and consequently also much consideration from
the research community. Moreover, works on this topic consist mainly in measurement
studies of P2P-TV application performance in real networks[15, 16]. The two classi-
fiers compared are the only ones proven to correctly identifythis type of traffic. Kiss
was already contrasted with a DPI and a flow-based classification algorithm in [4], prov-
ing itself the most accurate for this class of traffic. Moreover in our study we also take
into account the computational cost and memory occupation of the algorithms under
comparison.

3 Classification algorithms

This section briefly introduces the two classifiers. Here we focus our attention on the
most relevant aspects in a comparison perspective, while werefer the interested reader
to [5] and [3] for further details and discussion on parameters settings.

Both Kiss and Abacus employ supervised machine learning as their decision pro-
cess, in particular Support Vector Machine - SVM [17], whichhas already been proved
particularly suited for traffic classification [13]. In the SVM context, entities to be clas-
sified are described by an ordered set offeatures, which can be interpreted as coordi-
nates of points in a multidimensional space. Kiss and Abacusdiffer for the choice of the
features. The SVM must be trained with a set of previously labeled points, commonly
referred to as thetraining set. During the training phase, the SVM basically defines a
mapping between the original feature space and a new space, usually characterized by
an higher dimensionality, where the training points could be separated by hyperplanes.
In this way, the target space is subdivided in areas, each associated to a specific class.
During the classification phase, a point can be classified simply looking for the region
which best fits it.

Before proceeding with the description of the classifiers, it is worth analyzing their
common assumption. First of all, they both classifyendpoints, i.e., couples (IP address,
transport-layer port) on which a given application is running. Second, they currently
work only on UDP traffic, since this is the transport-layer protocol generally chosen
by P2P-TV applications. Finally, given that they rely on a machine learning process,
they follow a similar procedure to perform the classification. As a first step, the engines
derive a signature vector from the analysis of the traffic relative to the endpoint they
are classifying. Then, they feed the vector to the trained SVM, which in turn gives the
classification result. Once an endpoint has been identified,all the flows which have

that endpoint as source or destination are labeled as being generated by the identified
application.

3.1 Abacus

A preliminary knowledge of the internal mechanisms of P2P-TV applications is needed
to fully understand the key idea behind the Abacus classifier. A P2P-TV application per-
forms two different tasks: first, it exchanges video chunks (i.e., small fixed-size pieces
of the video stream) with other peers, and, second, it participates to the P2P overlay
maintenance. The most important aspect is that it must keep downloading a steady rate
of video stream to provide users with a smooth video experience. Consequently, a P2P-
TV application maintains a given number of connections withother peers from which it
downloads pieces of the video content. Abacus signatures are thus based on the number
of contacted peers and the amount of exchanged information among them.

In Tab. 4 we have reported the procedure followed by Abacus tobuild the signatures.
The first step consists in counting the number of packets and bytes received by an
endpoint from each peer during a time window of 5 sec. At the beginning, let us focus
on the packet counters. We first define a partition ofN in B exponential-sized binsIi,
i.e. I0 = [0, 1], Ii = [2i−1 + 1, 2i] andIB = [2B,∞). Then, we order the observed
peers in bins according to the number of packets they have sent to the given endpoint.
In the pseudo-code we see that we can assign a peer to a bin by simply calculating the
logarithm of the associated number of packets. We proceed inthe same way also for the
byte counters (except that we use a different set of bins), finally obtaining two vectors
of frequencies, namelyp and b. The concatenation of the two vectors is the Abacus
signature which is fed to the SVM for the actual decision process.

This simple method highlights the distinct behaviors of thedifferent P2P-TV appli-
cations. Indeed, an application which implements an aggressive peer-discovering strat-
egy will receive many single-packet probes, consequently showing large values for low
order bins. Conversely, an application which downloads thevideo stream using chunks
of, say, 64 packets will exhibit a large value of the 6-th bin.

Abacus provides a simple mechanism to identify applications which are “unknown”
to the SVM (i.e., not present in the training set), which in our case means non P2P-TV
applications. Basically, for each class we define a centroidbased on the training points,
and we label a signature as unknown if its distance from the centiroid of the associated
class exceeds a given threshold. To evaluate this distance we use the Bhattacharyya
distance, which is specific for probability mass functions.All details on the choice of
the threshold, as well as all other parameters can be found in[5].

3.2 Kiss

The Kiss classifier [3] is instead based on a statistical analysis of the packets payload.
In particular, it exploits aChi-Square like test to extract statistical features from the
first application-layer payload bytes. Considering a window of C segments sent (or
received) by an endpoint, the firstk bytes of each packet payload are split intoG groups
of b bits. Then, the empirical distributionsOi of values taken by theG groups over the

Table 1.Datasets used for the comparison

Dataset DurationFlows BytesEndpoints
Napa-WUT 180 min 73k 7Gb 25k

Operator 2006 (op06)45 min 785k 4Gb 135k
Operator 2007 (op07)30 min 319k 2Gb 114k

C segments are compared to a uniform distributionEi = C/2b by means of the Chi-
Square like test:

Xg =

2
b∑

i=1

(Og
i − E)

2

E
g ∈ [1, G] (1)

This allows to measure the randomness of each group of bits and to discriminate among
constant/random values, counters, etc. as the Chi-Square test assumes different values
for each of them. The array of theG Chi-Square values defines the application signature.
In this paper, we use the firstk = 12 bytes of the payload divided into groups of 4 bits
(i.e.,G = 24 features per vector) andC = 80 segments to compute each Chi-Square.

The generated signatures are then fed to a multi-class SVM machine, similarly to
Abacus. As previously stated, a training set is used to characterize each target class,
but for Kiss an additional class must be defined to represent the remaining traffic, i.e.,
theunknown class. In fact, a multi-class SVM machine always assigns a sample to one
of the known classes, in particular to the best fitting class found during the decision
process. Therefore, in this case a trace containing only traffic other than P2P-TV is
needed to characterize the unknown class. We already mentioned that in Abacus this
problem is solved by means of a threshold criterion using thedistance of a sample from
the centroid of the class. We refer the reader to [3] for a detailed discussion about Kiss
parameter settings and about the selection of traffic to represent the unknown class in
the training set.

4 Experimental Results

4.1 Methodology and Datasets

We evaluate the two classifiers on the traffic generated by four popular P2P-TV appli-
cations, namely PPLive, TVAnts, SopCast and Joost3. Furthermore we use two distinct
sets of traces to asses two different aspects of our classifiers.

The first set was gathered during a large-scale active experiment performed in the
context of the Napa-Wine European project [18]. For each application we conduct an
hour-long experiment where several machines provided by the project partners run the
software and captured the generated traffic. The machines involved were carefully con-
figured in such a way that no other interfering application was running on them, so that

3 Joost became a web-based application in October 2008. At thetime we conducted the experi-
ments, it was providing VoD and live-streaming by means of P2P

Table 2.Classification results

(a) Flows

Abacus
pp tv sp jo un

pp 13.35 0.32 - 0.06 86.27
tv 0.86 95.67 0.15 - 3.32
sp 0.33 0.03 98.04 0.1 1.5
jo 0.06 2.21 - 81.53 16.2

op06 0.1 0.1 1.03 0.0698.71
op07 0.21 0.03 0.87 0.0598.84

Kiss
pp tv sp jo un nc

pp 98.8 - - - 0.2 1
tv - 97.3 - 0.01 0.69 2
sp - - 98.82 - 0.21 0.97
jo - - - 86.37 3.63 10

op06 - 0.44 0.08 0.5592.686.25
op07 - 2.13 0.09 1.2184.0712.5

(b) Bytes

Abacus
pp tv sp jo un

pp 99.33 - - 0.11 0.56
tv 0.01 99.95 - - 0.04
sp 0.01 0.09 99.85 0.02 0.03
jo - - 99.98 0.02

op06 1.02 - 0.58 0.5597.85
op07 3.03 - 0.71 0.2596.01

Kiss
pp tv sp jo un nc

pp 99.97 - - - 0.01 0.02
tv - 99.96 - - 0.03 0.01
sp - - 99.98 - 0.01 0.01
jo - - - 99.98 0.01 0.01

op06 - 0.07 - 0.08 98.45 1.4
op07 - 0.08 0.74 0.0596.262.87

pp=PPLive, tv=Tvants, sp=Sopcast, jo=Joost, un=Unknown,nc=not-classified

the traces contain P2P-TV traffic only. This set is used both to train the classifiers and
to evaluate their performance in identifying the differentP2P-TV applications.

The second dataset consists of two real-traffic traces collected in 2006 and 2007
on the network of a large Italian ISP. This operator providesits customers with un-
controlled Internet access (i.e., it allows them to run any kind of application, from web
browsing to file-sharing), as well as telephony and streaming services over IP. Given the
extremely rich set of channels available through the ISP streaming services, customers
are not inclined to use P2P-TV applications and actually no such traffic is present in
the traces. We verified this by means of a classic DPI classifier as well as by manual
inspection of the traces. This set has the purpose of assessing the number of false alarms
raised by the classifiers when dealing with non P2P-TV traffic. We report in Tab. 1 the
main characteristics of the traces.

To compare the classification results, we employ thediffinder tool [19], as al-
ready done in [4] . This simple software takes as input the logs from different classifiers
with the list of flows and the associated classification outcome. Then, it calculates as
output several aggregate metrics, such as the percentage ofagreement of the classifiers
in terms of both flows and bytes, as well as a detailed list of the differently classified
flows, so eventually enabling further analysis.

4.2 Classification results

Tab. 2 reports the accuracy achieved by the two classifiers onthe test traces. Each table
is organized in a confusion-matrix fashion where rows correspond to real traffic i.e.

the expected outcome, while columns report the possible classification results. For each
table, the upper part is related to the Napa-Wine traces while the lower part is dedicated
to the operator traces. The values in bold on the main diagonal of the tables express the
recall, a metric commonly used to evaluate classification performance, defined as the
ratio of true positives over the sum of true positives and false negatives. The “unknown”
column counts the percentage of traffic which was recognizedas not being P2P-TV
traffic, while the column “not classified” accounts for the percentage of traffic that Kiss
cannot classify as it needs at least 80 packets for any endpoint.

At first glance, both the classifiers are extremely accurate in terms of bytes. For the
Napa-Wine traces the percentage of true positives exceeds 99% for all the considered
applications. For the operator traces, again the percentage of true negatives exceeds
96% for all traces, with Kiss showing a overall slightly better performance. These re-
sults demonstrate that even an extremely lightweight behavioral classification mecha-
nism, such as the one adopted in Abacus, can achieve the same precision of an accurate
payload based classifier.

If we consider flow accuracy, we see that for three out of four applications the
performance of the two classifiers is comparable. Yet Abacuspresents a very low per-
centage of 13.35% true positives for PPLive, with a rather large number of flows falling
in the unknown class. By examining the classification logs, we found that PPLive actu-
ally uses more ports on the same host to perform different functions (e.g. one for video
transfer, one for overlay maintenance). In particular, from one port it generates many
single-packet flows all directed to different peers, apparently to perform peer discov-
ery. All these flows, which account for a negligible portion of the overall bytes, fall in
the first bin of the abacus signature, which is always classified as unknown. However,
from the byte-wise results we can conclude that the video endpoint is always correctly
classified.

Finally, we observe that Kiss has a lower flow accuracy for theoperator traces. In
fact, the great percentage of flows falling in the “not classified” class means that many
flows are shorter than 80 packets. Again, this is only a minor issue since Kiss byte
accuracy is anyway very high.

5 Comparison

5.1 Functional Comparison

In the previous section we have shown that the classifiers actually have similar perfor-
mance for the identification of the target applications as well as the “unknown” traffic.
Nevertheless, they are based on very different approaches,both presenting pros and
cons, which need to be all carefully taken into account.

Tab. 3 summarizes the main characteristics of the classifiers, which are reviewed
in the following. The most important difference is the classification technique used.
Even if both classifiers are statistical, they work at different levels and clearly belong
to different families of classification algorithms. Abacusis a behavioral classifier since
it builds a statistical representation of the pattern of traffic generated by an endpoint,
starting from transport-level data. Conversely, Kiss derives a statistical description of

Table 3.Main characteristics of Abacus and Kiss

Characteristic Abacus Kiss
Technique Behavioral Stocastic Payload Inspection

Entity Endpoint Endpoint/Flow
Input Format Netflow-like Packet trace

Grain Fine grained Fine grained
Protocol Family P2P-TV Any

Rejection Criterion Threshold Train-based
Train set size Big (4000 smp.) Small(300 smp.)

Time ResponsivenessDeterministic(5sec) Stochastic(early 80pkts)
Network Deploy Edge Edge/Backbone

the application protocol by inspecting packet-level data,so it is a payload-based classi-
fier.

The first consequence of this different approach lies in typeand volume of informa-
tion needed for the classification. In particular, Abacus takes as input just a measure-
ment of the traffic rate of the flows directed to an endpoint, interms of both bytes and
packets. Not only this represents an extremely small amountof information, but it could
also be gathered by a Netflow monitor, so that no packet trace has to be inspected by
the classification engine itself. On the other hand, Kiss must necessary access packet
payload to compute its features. This constitutes a more expensive operation, even if
only the first 12 bytes are sufficient to achieve a high classification accuracy.

Despite the different input data, both classifiers work at a fine-grained level, i.e.,
they can identify the specific application related to each flow and not just the class
of applications (e.g., P2P-TV). This consideration may appear obvious for a payload-
based classifier such as Kiss, but it is one of the strength of Abacus over other behavioral
classifiers which are usually capable only of a coarse grained classification.

Clearly, Abacus pays the simplicity of its approach in termsof possible target traffic.
In fact its classification process relies on some specific properties of P2P-TV traffic (i.e.,
the steady download rate required by the application to provide a smooth video play-
back), which are really tied to this particular service. Forthis reason Abacus currently
cannot be applied to applications other than P2P-TV applications. On the contrary, Kiss
is more general, it makes no particular assumptions on its target traffic and can be ap-
plied to any protocol. Indeed, it successfully classifies other kinds of P2P applications,
from file-sharing (e.g., eDonkey) to P2P VoIP (e.g., Skype),as well as traditional client-
server applications (e.g., DNS).

Another important distinguishing element is the rejectioncriterion. Abacus defines
an hypersphere for each target class and measures the distance of each classified point
from the center of the associated hypersphere by means of theBhattacharyya formula.
Then, by employing a threshold-based rejection criterion,a point is label as “unknown”
when its distance from the center exceeds a given value. Instead Kiss exploits a multi-
class SVM model where all the classes, included the unknown,are represented in the
training set. If this approach makes Kiss very flexible, the characterization of the classes

Table 4.Analytical comparison of the resource requirements of the classifiers

Abacus Kiss

Memory
allocation

2F counters 2
bG counters

Packet
processing

EP state = hash(IPd, portd)
FL state = EP state.hash(IPs, ports)
FL state.pkts ++
FL state.bytes += pkt size

EP state = hash(IPd, portd)
for g = 1 to G do

Pg = payload[g]
EP state.O[g][Pg]++

end for

Tot. op. 2 lup + 2sim (2G+1)lup + Gsim

Feature
extraction

EP state = hash(IPd, portd)
for all FL state in EP state.hash do

p[log2(FL state.pkts)] += 1
b[log2(FL state.bytes)] += 1

end for
N = count(keys(EP state.hash))
for all i = 0 to B do

p[i] /= N
b[i] /= N

end for

E = C/2b (precomputed)
for g = 1 to G do

Chi[g] = 0
for i = 0 to 2

b do
Chi[g] +=
(EP state.O[g][i]-E)2

end for
Chi[g] /= E

end for

Tot. op. (4F+2B+1)lup + 2(F+B)com + 3Fsim 2
b+1G lup + Gcom + (3·2b+1)Gsim

lup=lookup, com=complex operation, sim=simple operation

can be critical especially for the unknown since it is important that the training set
contains samples from all possible protocols other than thetarget ones.

We also notice that there is an order of magnitude of difference in the size of the
training set used by the classifiers. In fact, we trained Abacus with 4000 samples per
class (although in some tests we experimented the same performance even with smaller
sets) while Kiss, thanks to the combination of the discriminative power of both the
ChiSquare signatures and the SVM decision process, needs only 300 samples per class.

On the other hand, Kiss needs at least 80 packets generated from (or directed to) an
endpoint in order to classify it. This may seem a strong constraint but results reported
in Sec. 4 actually show that the percentage of not supported traffic is negligible, at least
in terms of bytes. This is due to the adoption of the endpoint-to-flow label propagation
scheme, i.e. the propagation of the label of an “elephant” flow to all the “mice” flows
of the same endpoint. With the exception of particular traffic conditions, this labeling
technique can effectively bypass the constraint on the number of packets.

Finally, for what concerns the network deployment, Abacus needs all the traffic
received by the endpoint to characterize its behavior. Therefore, it is only effective
when placed at the edge of the network, where all traffic directed to an host transits.
Conversely, in the network core Abacus would likely see onlya portion of this traffic,
so gathering an incomplete representation of an endpoint behavior, which in turn could
result in an inaccurate classification. Kiss, instead, is more robust with respect to the
deployment position. In fact, by inspecting packet payload, it can operate even on a
limited portion of the traffic generated by an endpoint, provided that the requirement on
the minimum number of packets is satisfied.

Table 5.Numerical case study of the resource requirements of the classifiers

Abacus Kiss
Memory allocation 320 bytes 384 bytes
Packet processing 2 lup + 2sim 49lup + 24sim

Feature selection177lup + 96com + 120sim 768lup + 24com + 1176sim

Params values B=8, F=40 G=24, b=4

5.2 Computational Cost

To complete the classifiers comparison, we provide an analysis of the requirements in
terms of both memory occupation and computational cost. We follow a theoretical ap-
proach and calculate these metrics from the formal algorithm specification. In this way,
our evaluation is independent from specific hardware platforms or code optimizations.
Tab. 4 compares the costs from an analytical point of view while in Tab. 5 there is a
numerical comparison based on a case study.

Memory footprint is mainly related to the data structures used to compute the statis-
tics. Kiss requires a table ofG · 2b counters for each endpoint to collect the observed
frequencies employed in the chi-square computation. For the default parameters, i.e.
G = 24 chunks ofb = 4 bits, each endpoint requires 384 counters. Abacus, instead,
requires two counters for each flow related to an endpoint, sothe total amount of mem-
ory is not fixed but it depends on the number of flows per endpoint. As an example,
Fig. 1-(a) reports, for the two operator traces, the CDF of the number of flows seen by
each endpoint in consecutive windows of 5 seconds, the default duration of the Abacus
time-window. It can be observed that the 90th percentile in the worst case is nearly 40
flows. By using this value as a worst case estimate of the number of flows for a generic
endpoint, we can say that2 · #Flows = 80 counters are required for each endpoint.
This value is very small compared to Kiss requirements but for a complete comparison
we also need to consider the counters dimension. As Kiss useswindows of 80 packets,
its counters assume values in the interval[0, 80] so single byte counters are sufficient.
Using the default parameters, this means 384 bytes for each endpoint. Instead, the coun-
ters of Abacus do not have a specific interval so, using a worstcase scenario of 4 bytes
for each counter, we can say that 320 bytes are associated to each endpoint. In conclu-
sion, in the worst case, the two classifiers require a comparable amount of memory but
on average Abacus requires less memory than Kiss.

Computational cost can be evaluated comparing three tasks:the operations per-
formed on each packet, the operations needed to compute the signatures and the op-
erations needed to classify them. Tab. 4 reports the pseudo code of the first two tasks
for both classifiers, specifying also the total amount of operations needed for each task.
The operations are divided in three categories and considered separately as they have
different costs:lup for memory lookup operations,com for complex operations (i.e.,
floating point operations),sim for simple operations (i.e., integer operations).

Let us first focus on the packet processing part, which presents many constraints
from a practical point of view, as it should operate at line speed. In this phase, Aba-
cus needs 2 memory lookup operations, to access its internalstructures, and 2 integer

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

Flows @ 5sec

C
D

F
C

D
F

op06
op07
joost

pplive
sopcast

tvants

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10

time @ 80pkt

C
D

F

op06
op07
joost

pplive
sopcast

tvants

(b)

Fig. 1. Cumulative distribution function of (a) number of flows per endpoint and (b) duration of
a 80 packet snapshot for the operator traces

increments per packet. Kiss, instead, needs2G + 1 = 49 lookup operations, half of
which are accesses to packet payload. Then, Kiss must computeG integer increments.
Since memory read operations are the most time consuming, from our estimation we
can conclude that Abacus should be approximately 20 times faster than Kiss in the
packet processing phase.

The evaluation of the signature extraction process insteadis more complex. First of
all, since the number of flows associated to an endpoint is notfixed, the Abacus cost is
not deterministic but, like in the memory occupation case, we can consider 40 flows as
a worst case scenario. For the lookup operations, ConsideringB = 8, Abacus requires
a total of 177 operations, while Kiss needs 768 operations, i.e., nearly four times as
many. For the arithmetic operations, Abacus needs 96 floating point and 120 integer
operations, while Kiss needs 24 floating point and 1176 integer operations.

Abacus produces one signature every 5 seconds, while Kiss signatures are processed
every 80 packets. To estimate the frequency of the Kiss calculation, in Fig. 1(b) we show
the CDF of the amount of time needed to collect 80 packets for an endpoint. It can be
observed that, on average, a new signature is computed every2 seconds. This means
that Kiss performs the feature calculation more frequently, i.e., it is more reactive and
possibly more accurate than Abacus but obviously also more resource consuming.

Finally, the complexity of the classification task depends on the number of features
per signature, since both classifiers are based on a SVM decision process. The Kiss
signature is composed, by default, ofG = 24 features, while the Abacus signature
contains 16 features: also from this point of view Abacus appears lighter than Kiss.

6 Conclusions

In this paper we compared two approaches to the classification of P2P-TV traffic. We
provided not only a quantitative evaluation of the algorithm performance by testing
them on a common set of traces, but also a more insightful discussion of the differences
deriving from the two followed paradigms.

The algorithms proved to be comparable in terms of accuracy in classifying P2P-TV
applications, at least regarding the percentage of correctly classified bytes. Differences
emerged also when we compared the computational cost of the classifiers. With this
respect, Abacus outperforms Kiss, because of the simplicity of the features employed
to characterize the traffic. Conversely, Kiss is much more general, as it can classify
other types of applications as well.

Our work is a first step in cross-evaluating the novel algorithms proposed by the
research community in the field of traffic classification. We showed how an innova-
tive behavioral method can be as accurate as a payload-basedone, and at the same
time lighter, so being a perfect candidate for scenarios with hard constraints in term
of computational resources. However, we also showed some limitations in its general
applicability, which we would like to address in our future work.

References

1. Moore, Andrew. W. and Papagiannaki, Konstantina: Towardthe Accurate Identification of
Network Applications. In: Passive and Active Measurement (PAM’05), Boston, MA, US
(March 2005)

2. Karagiannis, T., Broido, A., Brownlee, N., Claffy, K., Faloutsos, M.: Is p2p dying or just
hiding? In: IEEE GLOBECOM ’04., Dallas, Texas, US (2004)

3. Finamore, A., Mellia, M., Meo, M., Rossi, D.: KISS: Stocastic Packet Inspection. In: Traffic
Measurement and Analysis (TMA) Workshop at IFIP Networking’09, Aachen, Germany
(May 2009)

4. Cascarano, N., Risso, F., Este, A., Gringoli, F., Salgarelli, L., Finamore, A., Mellia, M.:
Comparing p2ptv traffic classifiers submitted to IEEE ICC 2010.

5. Valenti, S., Rossi, D., Meo, M., Mellia, M., Bermolen, P.:Accurate, Fine-Grained Classifi-
cation of P2P-TV Applications by Simply Counting Packets. In: Traffic Measurement and
Analysis (TMA) Workshop at IFIP Networking ’09, Aachen, Germany (May 2009)

6. Bernaille, L., Teixeira, R., Salamatian, K.: Early application identification. In: Proc. of ACM
CoNEXT 2006, Lisboa, PT (December 2006)

7. Williams, N., Zander, S., Armitage, G.: A prelimanery performance comparison of five
machine learning algorithms for practical ip traffic flow comparison. ACM SIGCOMM
Comp. Comm. Rev.36(5) (2006) 7–15

8. Erman, J., Arlitt, M., Mahanti, A.: Traffic classificationusing clustering algorithms. In:
MineNet 06: Mining network data (MineNet) Workshop at ACM SIGCOMM ’06, Pisa, Italy
(2006)

9. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: Blinc: multilevel traffic classification in
the dark. SIGCOMM Comput. Commun. Rev.35(4) (2005) 229–240

10. Iliofotou, M., Kim, H., Pappu, P., Faloutsos, M., Mitzenmacher, M., Varghese, G.: Graph-
based p2p traffic classification at the internet backbone. In: 12th IEEE Global Internet Sym-
posium (GI2009), Rio de Janeiro, Brazil (April 2009)

11. Salgarelli, L., Gringoli, F., Karagiannis, T.: Comparing traffic classifiers. ACM SIGCOMM
Comp. Comm. Rev.37(3) (2007) 65–68

12. Nguyen, T.T.T., Armitage, G.: A survey of techniques forinternet traffic classification using
machine learning. IEEE Communications Surveys & Tutorials10(4) (2008) 56–76

13. Kim, H., Claffy, K., Fomenkov, M., Barman, D., Faloutsos, M., Lee, K.: Internet traffic
classification demystified: myths, caveats, and the best practices. In: Proc. of ACM CoNEXT
2008, Madrid, Spain (2008)

14. Li, W., Canini, M., Moore, A.W., Bolla, R.: Efficient application identification and the tem-
poral and spatial stability of classification schema. Computer Networks53(6) (2009) 790–
809

15. Hei, X., Liang, C., Liang, J., Liu, Y., Ross, K.W.: A Measurement Study of a Large-Scale
P2P IPTV System. IEEE Transactions on Multimedia (Dec. 2007)

16. Li, B., Qu, Y., Keung, Y., Xie, S., Lin, C., Liu, J., Zhang,X.: Inside the New Coolstreaming:
Principles, Measurements and Performance Implications. In: IEEE INFOCOM ’08, Phoenix,
AZ (April 2008)

17. Cristianini, N., Shawe-Taylor, J.: An introduction to Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge University Press, New York, NY (1999)

18. Napa-Wine:http://www.napa-wine.eu/.
19. Risso, F., Cascarano, N.: Diffinder available athttp://netgroup.polito.it/

research-projects/l7-traffic-classification.

