
Pictures from the Skype

Dario Rossi, Silvio Valenti, Paolo Veglia
TELECOM ParisTech, France

first.last@enst.fr

Dario Bonfiglio, Marco Mellia, Michela
Meo

Politecnico di Torino, Italy

first.last@polito.it

ABSTRACT

This paper focuses on the characterization and classification of Skype

traffic, a nowadays very popular and fashionable VoIP application.

Building over previous work, we develop a software tool which can

be used to examine the evolution of Skype call classification in an

interactive fashion. The demonstrator software focuses on the main

aspects of Skype traffic characterization and presents the traffic pat-

terns Skype generates during a call or while idle. In addition, the

demonstrator shows the evolution of the internal indexes the Skype

classifiers use.

After describing the classification process and the demonstrator

software, we use the tool to demonstrate the feasibility of online

Skype traffic identification, considering both accuracy and compu-

tational costs. Experimental results show that few seconds of obser-

vation are enough to allow the classifier engines to correctly iden-

tify the presence of Skype flows. Moreover, results indicate that the

classification engine can cope with multi-Gbps links in real-time

using common off-the-shelf hardware.

Categories and Subject Descriptors

C.4 [Computer Communication]: Measurement Techniques; C.2.5

[Computer Communication Network]: Internet

General Terms

Demonstrator, Experimentation, Measurement

1. INTRODUCTION TO SKYPE
VoIP is currently becoming a synonym for telephony, and Skype

is beyond any doubt the most amazing example of this new phe-

nomenon: developed in 2003 by the creators of KaZaa, it recently

reached over 100 millions of users, about 10 millions of which are

on-line at the same time, becoming so popular that people indicate

Skype IDs in their business cards. By building over the Skype clas-

sification engine we proposed in [1], we describe in this paper a

demonstrator software whose goals are:

• to show Skype traffic generation, by plotting in real time the

packet generation process of a Skype VoIP/video call;

• to demonstrate the Skype classification techniques proposed

in [1];

• to monitor Skype activity when idle, showing the signalling

messages exchanged to maintain the P2P overlay.

In [1], we proposed a classification framework to reveal the pres-

ence of Skype traffic within traffic aggregates. The classification

engine, briefly overviewed in Sec. 2, relies on the joint use of

two different and complementary techniques. The first approach

is based a stochastic characterization of Skype traffic: inter-packet

gap (IPG) and packet length are used as features of a decision

process of the family of the Naive Bayesian Classifiers (NBC).

The second technique, named Chi-Square Classifier (CSC), de-

tects Skype fingerprint from the packet framing structure, by us-

ing a measure of the degree of randomness of the first bytes of the

packets payload; the measure is derived from Pearson’s Chi Square

test and is agnostic to VoIP-related traffic characteristics.

Based on the above classification framework, we setup an in-

teractive demonstrator, described in Sec. 3, that aims at assessing

two complementary aspects on the life of Skype peers. First, we

illustrate the classification mechanism. The output (i) of the Skype

packet generation process and (ii) of the indexes computed by the

classifiers are shown and updated during live Skype calls, so that

users can appreciate the variability of the traffic Skype generates,

and the effectiveness of the classifiers. Complementary information

providing insights into the Skype overlay maintenance are shown

as well.

Moreover, beside the demonstrator description, this paper fo-

cuses on the feasibility of online Skype traffic classification, dis-

cussing memory requirements and computational complexity: as

we will show in Sec. 4, there is no particular hindrance that ham-

pers online Skype classification.

2. SKYPE CLASSIFICATION OVERVIEW
As previously mentioned, the first objective of the demonstrator

is to illustrate, in an interactive fashion, the Skype traffic generation

and classification processes proposed in [1].

The demonstrator workflow is sketched in Fig. 1, where differ-

ent subsequent phases are reported from left to right: namely traf-

fic generation, measurement, classification and analysis. Whenever

Skype uses UDP as transport level protocol, the client assembles a

message by multiplexing several voice/video/chat/data blocks into

the payload of a single transport layer segment as sketched in Fig. 1-

(a). Encryption is applied to the resulting message to protect the

information and to hide protocol details. Since Skype preferred

transport layer protocol is UDP, we mostly ignore TCP traffic for

the sake of simplicity. A stream of UDP Skype messages is de-

picted in Fig. 1-(b): from top to bottom, we are interested in the

UDP packet payload, message size and inter-packet gap (IPG).

Let us focus on UDP payload first. As UDP offers only a con-

nectionless unreliable service, there is no guarantees that data will

be delivered entirely and in-sequence: therefore, a Skype receiver

must extract information to detect and deal with possible incorrect

cypher stream lining (e.g., due to the loss of a message) directly

from the received packet. Thus, an UDP message must contain an

application layer header, that cannot be ciphered but rather only

83

 0 120 240
Time [s]

 0
 20
 40
 60
 80

 100

[m
s
]

Inter Pkt Gap

 50
 100
 150
 200
 250
 300

[B
y
te

s
]Skype Msg Size

UDP Payload

 0 120Time [s]

-25

-20

-15

-10

-5

 0

-25

-20

-15

-10

-5

 0

240

CSC

NBC

 0

1

Bs(C) = 1/w Σ log P {s|C}
w

Bt(C) = log P{t|C}

 0 100 200 300

Skype Message Size [Bytes]

ISAC
G.729

Traffic generation, measurement classification and analysis

χ = Σ (Οk − Εk) /Εk
22 2 -1

b

 k=0

CODEC
Block(i)

FRAMER

Rate ∆T RF

M

U

X

ARCHIVER

CYPHER

VOICE

Block(i-1)

Report

Block(j)

Block(j-1)

..
.

..
.

CODEC

VIDEO

SoM

H

H

H

H

H

Time

Activity

Pattern

5M

5M

B
y
te

s

40k

0

40k

P
a

c
k
e

ts

12k

12k

F
lo

w
s

 0

0

0

 100

 200

 300

C
lie

n
ts

Sun Mon Tue Wed Thu Fri Sat

a b e f

 252B

 210B

42B
Skype Msg

Size Belief

Inter Pkt

Gap Belief

30ms 60ms

40ms

χ /n2

c d

Skype Peer

Geolocation

Torino

Paris

Figure 1: Synopsis of Skype Traffic Generation, Measurement, Classification and Analysis Process

obfuscated [2]. As a consequence, it turns out that a few bits of

the Skype message are actually deterministic, whereas all the oth-

ers appear as random due to the encryption process: this fact is

exploited by the Pearson CSC classifier at the top of Fig. 1-(c), in-

tuitively, the CSC quantifies the amount of randomness in groups

of bits of the UDP payload.

Let us now focus on the message size and IPG, shown in bottom

part of Fig. 1-(b), which are determined by both the voice/video

encoder, and the Skype framing and congestion control algorithms.

As shown in bottom plots of Fig. 1-(b), these metrics may vary

widely over time during the same call. Bottom part of Fig. 1-(c)

sketches a simplified NBC classifier, which computes the “belief”

(i.e., the likelihood) that a sequence of messages is a voice stream,

by comparing real measurements with an a-priori description of

known codecs. This description is given in terms of the Probabil-

ity Density Function (PDF) of the typical Skype message size and

IPG for different “modes” of any given codec. The belief varies

over time as well as in Fig. 1-(d), reflecting the different framing

and congestion control policies adopted by Skype during the call as

seen early in Fig. 1-(b).

The CSC “payload randomness” and the NBC “voice likelihood”

information are then (conservatively) combined to eventually clas-

sify the current flow as a VoIP flow which has been generated by

Skype.

3. THE DEMONSTRATOR SOFTWARE
The demonstrator software is a Python wrapper around the clas-

sification framework which is implemented in TSTAT [3, 4], a flow

level logger and traffic analyzer originally developed at Politecnico

di Torino. The demonstrator software provides a Qt graphical user

interface (GUI), where configuration parameters and output results

are arranged in different “tabs”, as the screenshot of Fig. 2 shows.

The source code of the software is available [5], along with a de-

tailed manual of the demonstrator installation and usage.

An important point to stress is that the engine implemented in

TSTAT executes the classification algorithms considering all traffic

flows exposed from the link under examination. The demonstrator

software, on the contrary, shows real-time results that are related to

an individual Skype peer at a time.

As previously stated, the demonstrator software allows real-time

interactive analysis of the traffic generated by a single Skype peer.

The user can freely select the peer the demonstrator software should

focus on, i.e., the PC running Skype. This choice is possible since

Skype uses one UDP endpoint for all data transmissions, corre-

sponding to the port number selected during installation (and con-

Figure 2: Screenshot of the SkypeDemo software: “flow” tab

figurable by the user): any Skype peer can be thus identified by the

pair (IP, UDP port). The demonstrator software allows to configure

the particular (IPprobe,portprobe) endpoint to analyze.

The demonstrator software then filters the traffic originated from

or destined to (IPprobe,portprobe). To pinpoint a particular flow, the

engine presents a list of flows generated/terminated to the selected

endpoint, from which it is possible to choose the particular flow

that should be visualized. Flow selection is done through the first

GUI tab, where flows are listed, sorted by decreasing number of

packets: the rationale is that as soon as a Skype call starts, the flow

corresponding to the actual call can then be easily selected since it

will quickly accumulate a lot of packets.

Once a flow has been selected, the demonstrator software starts

to visualize its statistical properties (on the “flow” tab), the NBC in-

dexes evolution (on the “bayes pktsize” and “bayes ipg” tabs) and

CSC index estimation (on the “chi square” tab). For illustration

purposes, a screenshot of the “flow” tab is shown in Fig. 2; from

top to bottom, it reports the packet size, packet inter-arrival time

and throughput evolution over time of the selected flow. Positive

values refer to the flow originated from the (IPprobe,portprobe) end-

point, while negative values refer to received packets. Since each

tab is updated real-time, the demonstrator allows to observe both

the packet generation process of Fig. 1-(b) as well as the output of

the classifiers of Fig. 1-(c).

84

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

 1 2 3 4 5 6 7 8 9 10

N
B

C
:

P
ac

k
et

 S
iz

e
B

el
ie

f

Time since start of flow [s]

NBC Threshold

G729
iLBC
ISAC

SVOPC

(a)

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

 1 2 3 4 5 6 7 8 9 10

N
B

C
:

P
ac

k
et

 S
iz

e
B

el
ie

f

Time since start of flow [s]

NBC Threshold

G729
iLBC
ISAC

SVOPC

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10

C
S

C
 v

al
u
es

Time since start of flow [s]

Mixed:
3 bits deterministic
and 1 bit random

Random

G729
iLBC
ISAC
SVOPC

(c)

Figure 3: Temporal evolution of: (a) packet size NBC belief, (b) inter-packet gap NBC belief and (c) CSC payload values.

In addition to visualize the Skype voice call properties, the demon-

strator aims at showing the activity of the selected Skype peer when

idle. Indeed, being Skype a P2P application, a significant number

of signalling messages is exchanged even if no call is in progress.

By observing all the traffic generated by the Skype peer, the demon-

strator extends the analysis to other interesting aspects of Skype ac-

tivity. More on details, the last three tabs of the demonstrator GUI

are:

• “pattern”: it represents Skype traffic patterns as detailed in [6];

• “extport”: it reports the distribution of ports used by Skype

peers contacted by the observed peer: since Skype uses ran-

dom ports, a uniform distribution is expected;

• “geoip”: it reports the geographical localization of Skype

peers, obtained by resolving in real-time the IP address of

any new peer contacted: the histogram of the nationality of

the contacted peers is then displayed.

4. ONLINE CLASSIFICATION
In [1], the classification engine is evaluated taking a decision at

the flow end, after that the NBC and CSC statistics have been com-

puted for several windows of packets and after that all the transient

effects have vanished. In the following, we refer to classification

decision taken at the flow end as “late classification”. While late

classification enables a number of useful tasks (e.g., traffic moni-

toring, accounting, differential billing, etc.), it precludes other im-

portant tasks the network operator may be interested in (e.g., QoS

and policy enforcement, traffic filtering, etc.). Therefore, it may

be desirable to take the classification decision as soon as possible,

possibly after a few packets have been observed – which we will

refer to as “early classification”.

Though [1] focused on late classification, the proposed method-

ology has no intrinsic limitation for early classification. In the fol-

lowing, we show that early classification of Skype traffic is possible

and the same accuracy of late classification can be achieved. This

is an important finding, which not only widen the classification en-

gine scope of application, but has also an impact on classification

complexity, as we discuss in the remaining of the paper.

4.1 Accuracy
To assess early versus late classification accuracy, useful insights

are offered by using the demonstrator software. Let us consider a

few Skype flows that are representative of different codecs (ISAC,

iLBC, SVOPC, G.729). We examine the time-evolution of the NBC

and CSC statistics depicted in Fig. 3. More on details, the figure

reports from left to right respectively: (a) the NBC belief of the

packet size, (b) the NBC belief of the average packet interarrival

time and (c) the CSC statistics of two different groups of bits of the

Skype payload.

Recalling that a successful identification requires the joint agree-

ment of the three classifiers, let us observe Fig. 3-(a). The plot re-

ports the temporal evolution of NBC belief of the packet size, since

the flow started, computed for each packet; the horizontal line rep-

resents the threshold above which there is a strong belief that packet

sizes are generated employing a given Skype Codec. We recall that

the NBC scale is logarithmic so that the higher the NBC values are,

the stronger the likelihood of being a Skype flow is. As it can be

expected, the NBC belief is higher for Codecs employing fixed size

blocks, like the G.729 and iLBC codecs. Most important though,

the NBC belief converges very quickly for all Codecs and all NBC

belief are above the threshold except for the first few seconds of

the SVOPC codec flow. Therefore, as far as the packet size NBC

is concerned, a few seconds are sufficient in order to successfully

identify any given Codec.

Similarly, Fig. 3-(b) reports the temporal evolution of NBC belief

evaluated considering the average inter-packet gap. A window of

N=30 packets is used to evaluate the average IPG, so that fewer

samples are available. Nonetheless, the IPG NBC statistics quickly

converge, so that few seconds are enough to correctly classify the

flow.

Finally, the Fig. 3-(c) reports the CSC statistics evolution over

time. Two different groups of bits of the Skype message payload

are considered. The first group is an example of a “mixed” group in

which some bits take random values, and some bits are determin-

istic. In this case, the CSC values grow linearly with the number

of observations. Bits in the second group are the typical example

of a group of random bits. As it clearly emerges from the example

picture, random and deterministic CSC values quickly diverges, so

that it is possible to promptly discriminate them. We can conclude

that the CSC decision concerning the Skype protocol fingerprint

can be taken after few seconds.

While the assessment of how early the classification can be taken

without its accuracy being compromised is outside the scope of this

paper, we experimentally verified over the dataset considered in [1]

that the accuracy of the classification decision is the same when

taken after 5 seconds of flow lifetime.

85

4.2 Complexity
We now focus on the engine run-time cost, considering both (i)

memory and (ii) computational resources requirements.

For memory requirement, for each tracked flow, each NBC clas-

sifier requires only two double floating point variables used to

accumulate the packet size and inter-packet-gap beliefs. Indeed,

NBC belief values are updated on an online fashion, and thus no

further state variable is needed. CSC classifiers instead need, for

every flows, 2b counters for each of the G groups of payload under

observation (with b = 4 and G = 16). The size of the counter ac-

tually depends on how early the decision is taken: indeed, a byte

counter is sufficient in the case of early classification (i.e., when-

ever the decision is taken over the first 255 packets), whereas a

word counter is more apt for late classification. Let us roughly

quantify the number of flows that can be tracked at the same time

when 1 GBytes of RAM is devoted to store the classification state

variables. From the above description, 272 Bytes are needed per

flow in the case of early classification. It follows that about 4 mil-

lions of flows can be tracked at the same time. Late classification

requires 578 Bytes per-flow, i.e., still more than 2 millions of flows

can be classified contemporarily. Thus, memory requirement is not

an issue considering today typical PC configuration.

Concerning computational requirement, for each sample, the NBC

classifier requires one logarithm and one sum operation to update

the belief value. The operations are performed either on every

packet of tracked flows (for the packet size NBC) or once every

window of N = 30 packets (for the average IPG NBC). Con-

versely, the CSC requires G counters to be incremented at each

packet arrival, whereas the computation of the CSC statistics needs

G ·2b multiplications when the classification decision is taken, i.e.,

once per each tracked flow.

While at first sight the above operations may seem to pose a sig-

nificant burden in terms of CPU requirement, our benchmark of the

classification engine actually shows that the computational over-

head is instead very limited.

To quantify this overhead, we consider two traces collected in

an edge (CAMPUS) and a core (GARR) network. The CAMPUS

dataset has been collected from the edge router that connects the

Politecnico di Torino campus network to the Internet, while the

GARR dataset has been collected on a OC-48 link that connects

two backbone nodes in the GARR network. Details can be col-

lected from [7] considering the GARR dataset whereas CAMPUS is

detailed in [1, 6]. We compare the performance of TSTAT when the

classification engine is turned on or off. Experiments are run on a

high-end PC featuring an Intel Quad-Core Xeon X5355 processor

clocked at 2.80GHz with 4096kB of cache, equipped with 4 GBytes

of RAM memory. Benchmark results are reported in Tab. 1, for

both datasets, in terms of TSTAT’s packet processing rate (in Kpps,

averaged over 10 runs on the same dataset). Several cases are re-

ported: the first row reports TSTAT baseline performance1, which

is obtained when the classification engine is turned off; second row

reports results considering the CSC engine only, while third row

reports results considering both the CSC and the NBC engines en-

abled. Finally, the last row refers to the case in which both the CSC

and the NBC are enabled, but early classification case is considered,

i.e., for each flow, both classifiers run up to when the classification

decision is taken after 5 seconds since the flow start. The table also

1Interestingly, advances in off-the-shelf PCs technology directly
entail a noticeable improvement of baseline performance: indeed,
considering the same dataset, baseline packet processing rate in-
creases of more than 30% with respect to 2006 results [7], obtained
on a 2.40 GHz Dual-Core Intel Xeon with 512 kBytes of cache and
2 GBytes of RAM memory.

Table 1: Cost Analysis of Online Skype Traffic Classification
Processing Rate [Kpps] Overhead [%]

Engine GARR CAMPUS GARR CAMPUS

None 334.92 450.78 0.0 0.0
CSC 329.12 411.63 1.7 8.7

CSC+NBC 313.76 346.12 3.6 23.2

CSC+NBC, Early 323.25 401.95 3.3 10.8

reports the relative (in percentage) overhead, express using pure

TSTAT performance as baseline performance.

It can be seen that, even when both the classifiers are enabled,

and late decision is considered, TSTAT is able to classify about 313-

346 thousand packets per second – which considering the typical

packet size corresponds to multi-Gigabit rates. Moreover, notice

that early classification further increases processing performance

to about 323-400 Kpps: therefore, we can conclude that computa-

tional performance are not of great concern either.

5. CONCLUSIONS
This paper presents an open-source demonstrator software aim-

ing at assisting and illustrating the characterization and classifi-

cation of Skype traffic. The software tool allows (i) to examine

the temporal evolution of Skype call classification in an interactive

fashion, and (ii) to visually depict several properties of the traffic

patterns Skype generates, either during a call or while idle.

The demonstrator is build around an open-source classification

engine, which we use to testify the feasibility of real-time classifi-

cation of Skype traffic. Our results show that classification decision

is not compromised when it is taken a few seconds after the flow

starts, achieving the same accuracy as decision taken at the flow

end. Moreover, design considerations concerning memory require-

ments show that the engine is able to scale up to several millions

contemporary flows. Finally, benchmark results testify that the en-

gine is able to cope with multi-Gbps links in real-time, even when

using common off-the-shelf hardware.

6. ACKNOWLEDGEMENTS
This work has been funded by the 7th Framework Programme

STREP Project “Network Aware Peer-to-Peer Applications under

WIse NEtwork” (NAPA-WINE). A real time demonstrator has been

exibithed at the ACM Sigmetrics 2008 conference.

7. REFERENCES
[1] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi and P. Tofanelli,

“Revealing Skype Traffic: When Randomness Plays with

You,” ACM SIGCOMM’07, Kyoto, Japan, Aug. 2007

[2] P. Biondi, F. Desclaux, “Silver Needle in the Skype.” Black

Hat Europe’06, Amsterdam, the Netherlands, Mar. 2006.

[3] M.Mellia, R.Lo Cigno, F.Neri, “Measuring IP and TCP

behavior on edge nodes with Tstat”, Computer Networks,

Vol. 47, No. 1, pp. 1–21, Jan 2005
[4] TSTAT website, http://tstat.tlc.polito.it/
[5] Skype demo,

http://www.enst.fr/˜drossi/SkypeDemo

[6] D. Bonfiglio, M. Mellia, M. Meo, N. Ritacca and D. Rossi,
“Tracking Down Skype Traffic,” In Proc. of IEEE
INFOCOM’08, Phoenix, USA, Apr. 2008

[7] D. Rossi and M. Mellia, “Real-Time TCP/IP Analysis with
Common Hardware,” In Proc. of IEEE ICC’06, Istanbul,
Turkey, Jun. 2006

86

