Real-Time TCP/IP Analysis with Common
Hardware

Dario Rossi
Politecnico di Torino — Dipartimento di Elettronica
dario.rossi@polito.it

Abstract— Traffic measurement represents an indispensable
and valuable tool for the analysis of nowadays telecommunication
networks. Moreover, it is desirable for traffic measurement and
analysis to be both continuous and persistent, since only these
joint requirements allow to track important changes on the traffic
pattern. On the other hand, transmission links bandwidth keep
improving, at a seemingly inexorable rate: therefore, the analysis
of the traffic is becoming more complex than ever. This paper
focuses on the description and the benchmarking of a network
traffic analyzer, called Tstat, able to process real-time traffic
further providing i) several advanced measurement indexes of
transport layer protocols and ii) ever-lasting monitoring capabil-
ities. Particularly, our aim is to assess what kind of links, and
under which load, can be continuously and persistently monitored
without compromising the complexity of the traffic analysis that
has to be performed.

I. INTRODUCTION

Starting from the works of Danzig [1], and Paxons [2],
the interest in data collection, measurement and analysis of
Internet traffic, aimed at characterizing either the network or
the user behavior, increased steadily. More recently, several re-
search groups [3], [4], [5] have focused on joint measurements
of IP packets and TCP flows, and on the network monitoring
in itself. Generally speaking, traffic characterization can be
performed by means of active measurements (i.e., by sending
and receiving probe traffic), or by means of passive measure-
ments (i.e., by collecting packets flowing through networks
links) or possibly by combining both these methodologies.
While active probing possibly allows to obtain very detailed
information on specific performance index, passive measure-
ments allow to characterize network and user behavior without
modifying their activities and status, allowing researchers to
acquire deeper insight into TCP/IP traffic. Among the various
passive traffic characterization project, the two most famous
are probably OCX-mon [6] from CAIDA, the Cooperative
Association for Internet Data Analysis, and IPMON [7] from
SprintLabs.

The layered structure of the TCP/IP protocol suite requires
the analysis of traffic at least at the IP (network), TCP/UDP
(transport), and possibly Application/User—behavior (applica-
tion) layers. Given today traffic pattern in the Internet, which
accounts for a large majority of the traffic being transfered
by TCP flows, it is particularly interesting to analyze and
measure transport layer indexes, ofter termed also “layer-4”
indexes. Given the complexity of layer-4 protocols, and of TCP

Marco Mellia
Politecnico di Torino — Dipartimento di Elettronica
marco.mellia@polito.it

in particular, this requires a lot of computational power and
memory space. Indeed, a single measurement at the transport
layer usually requires to build and maintain the flow status
for the whole flow lifetime, with a great deal of additional
complexity compared to pure packet layer analysis.

In this paper, we consider open source and passive anal-
ysis tools able to produce statistics at the transport layer.
Among the available software, we select Tstat [8], which
has been developed at the Politecnico di Torino in the past
years, and whose development has been motivated by the
lack of automatic tools able to produce statistical data from
passive network measurement. Though we select a specific
software tool, we argue that the insight gathered are valid
to a more general extent: indeed, Tstat performs typical
operations (such as flow status tracking, measurement com-
putation, and statistical data generation) that every layer-4
measurement tool must perform. Furthermore, several other
applications actually require to track transport layer status,
such as, e.g., Intrusion Detection Systems (IDS). For example,
tools such as Bro[9] and snort [10], are very similar in
their operative details despite having rather different goals:
indeed, to detect misbehaving or intruding users, IDSs need
to keep track and correlate packets to identify streams that
are not bound to a permitted network application. Similarly,
“layer-4 switching” [11] architectures (such as load balancers,
firewalls, NAT boxes or caching system) must perform per-
flow tracking operation, which are very similar to the one a
“layer-4 measurement box” performs.

The goal of this paper is therefore to assess the performance
of Tstat, but also to derive some useful indication on
scalability problems, and bottleneck identification when using
software-based tools to perform transport layer operations. By
running several benchmarking tests using different real traffic
traces, we show that off-the-shelf hardware can easily be used
to perform real-time layer-4 traffic analysis at Gigabit speed.
After briefly describing Tstat capabilities and the internal
operation performed in Section II, we present in Section III
the results of a thorough benchmarking involving parameters
such as the compiler, the I/O generation, the type of link under
analysis. The analysis of the performance, mainly described in
terms of memory usage, CPU utilization and packet processing
rate, will allow to gather the conclusion drawn in Section IV.

Tuelday

Throughput [Kbps]

Fi

g. 1. RRD Output: Time-Varying Throughput Distribution

II. TSTAT

Started as evolution of TCPtrace [12], Tstat analyzes
either real-time captured packet traces, using common PC
hardware or more sophisticated ad-hoc cards such as the DAG
cards [13]. The tool provides several measurements at the
network layer, but it mainly performs analysis of transport
layer protocols. Assuming that both forward and backward
stream of packets are observed, Tstat can correlate them
to infer advanced measurement indexes. If both TCP data
and ACK segments can be analyzed, Tstat rebuilds each
TCP flow status by looking at the TCP header in the forward
and backward packet flows. The TCP flow analysis allows the
derivation of novel statistics (such as the congestion window
size, out-of-sequence and duplicated segments classification,
etc.) which are collected distinguishing both between clients
and servers, (i.e., hosts that actively open a connection and
hosts that reply to the connection request) and also identifying
internal and external hosts (i.e., hosts located inside or outside
the measurement point). This methodology has been applied
to infer traffic characteristics at the transport layer, and in
particular to the TCP and RTP/RTCP protocols. A detailed
presentation of Tstat and list of all monitored performance
indexes is available from [14].

A. Tstat at a Glance

Tstat builds histograms of measured indexes, dumping the
collected distribution periodically, rather than dumping each
single measured datum. The data produced by the on-line
statistical analysis is ready to be visualized as either time
plots or aggregated plots over different time spans. A com-
plete transport layer log, which is useful for post-processing
purposes, tracks all analyzed layer-4 flows by including all
performance indexes for later post-processing. Finally, Tstat
has been integrated with RRDtool [15]: the whole measure-
ment indexes can be stored as a Round Robin Database (RRD).
Since RRD has fixed size, this allows ever-lasting live-capture
without compromising the statistical relevance of the data, as
it can be gathered by browsing [14].

1 T T T T
Busy Period —(1—

Night Period
| i}
\ le-1
|
le-1 p i
I :\ ‘g le-2
\ 1 S
g |\ ‘ Z
- =
ﬁ:\ F le-3
le-2 \D\j\ o
j\u\&‘jﬂ] l\%"ﬁ%‘“ le-4
o
le-3 s : 5 le-5
0 120 240 360 480 600 O 250 500 750 1000
Flow Lifetime [sec] Throughput [Kbps]
Fig. 2. Histogram Output: Throughput and Flow Lifetime Distributions

In order to quickly overview Tstat processing capabilities,
Figure 1 shows the time evolution of the TCP-flow throughput
distribution on a backbone link that is persistently monitored.
In order to make plots readable, only the average, 95" and
99*" percentiles are explicitly reported; moreover, both link
directions are displayed in a single plot, using either positive
or negative values for a given direction. Measurements are
evaluated with different granularities over different timescales:
each point corresponds to a 5 minute window in the hourly
plot (at the top), a 30 minute window for both daily and
weekly plots and a 2 hour interval in the monthly plot (at the
bottom). The plot of the entire month clearly shows a night-
and-day trend, which is mainly driven by the link load; the
trend is less evident at finer time scales, allowing to identify
stationary periods during which Tstat allows to perform
advanced statistical characterization.

The entire monthly dataset has been used to produce results
reported in Figure 2, which reports the survival function
(1-CDF) of the flow lifetime (left plot) and the probability
distribution function (pdf) of the per-flow throughput (right
plot). The dataset has been discriminated on busy (10:00—
15:00) versus off-peak (22:00-6:00) periods, which roughly
correspond to the concave and convex portions of Figure 1.
Let us notice from the left plot of Figure 2 that 99% of TCP
flows lasts less than 2 minutes, whereas this amount increases
to 99.7% when considering flows shorter than 5 minutes. This
observation has important impact on the workload a layer-4
box has to face.

B. Anatomy of a Traffic Analyzer

Tstat has been designed in a very modular way, so that it is
easy to integrate modules for new measurements; it has also
been designed to efficiently run on common hardware, allow-
ing both off-line and real-time traffic measurements. Multi-
threading programming is used to split the program execution
in several tasks, that may run in parallel, exploiting Operating
System multitasking capabilities as well as multiprocessor
hardware. Figure 3 shows a schematic diagram highlighting
the main building blocks implemented in Tstat, that we

/Input Module

Analysis Module

Live Capture (pcap, dag)
\Trace File (pcap, dag, snoop,...)

-

Memory Management Module|

Flow database garbage collector

nternal Database

histogram db, flow db

Persistent Database

RRD, histo, logs

/Output Module

RRD managment
Histogram management
Flow Log management

.

Visualizazion Module

Web interface
Post processing tools

Fig. 3. Tstat Functional Modules and Databases.

describe in the following.

Input Module. The Input Module allows to either capture
packets in real-time, or to read trace files already stored on
disk, where by trace we mean an uninterrupted bidirectional
flow of dumped packet headers. The real-time capture supports
classic pcap [16] interface with filtering support, as well as
the DAG capture API [13]; the latter allows to use dedicated
hardware, designed to perform live trace capture on high speed
links with minimum CPU overhead. Conversely, the trace file
routines are directly derived from TCPtrace, and allow to
read traces in several formats.

Analysis Module. The core features of Tstat are implemented
in the Analysis Module, whose basic assumption of is that
both the forward and backward packets are exposed, so that
bidirectional TCP connections can be analyzed. Each packet
is first analyzed by the IP module, which takes care of all
statistics at the packet layer; then, UDP or TCP per-segment
statistics are possibly computed. In case the packet is a TCP
segment, it goes through the TCP flow analyzer module, which
is the most complex part of Tstat. First, the module decides
if the segment belongs to an already identified flow, using
the classic 5-tuple, i.e., IP source/destination addresses, IP
protocol type and TCP source/destination ports. Otherwise, a
new flow is identified only provided that the SYN flag is set,
as Tstat processes only complete flows. Once the segment
is successfully identified, all state variables related to the flow
are updated. Finally, in case the segment correctly closes a
flows, all flow-layer statistics are updated and the flow data
structures are released.

Similarly, UDP segments go through the UDP flow analyzer
module where, given that UDP is a connectionless protocol, no
signaling can be exploited to identify new flows. Therefore, if
no already tracked flow can be associated to the UDP segment
under analysis, a new flow is created and tracked. Besides,
additional statistics are available for RTP/RTCP flows, and
other specific-traffic (e.g., multimedia, peer-2-peer) modules
can easily be integrated into the architecture.

Internal Database. Statistics collected by the Analysis Mod-
ule are stored internally using the Internal Database. Two main
databases are used: the “histogram database” stores all col-
lected statistics, and the “flow database” stores temporary data

used to perform transport layer measurement. Each histogram
is a simple static array of integer that counts the number of
times a given measured index assumes values in a given range.
The flow database is the core of the layer-4 measurements,
as it stores all the state variable variables related to every
ongoing flow. A very efficient memory management core has
been implemented, based on reuse techniques that optimize
memory usage.

Memory Management Module. The Memory Management
Module is a separate thread that is periodically activated
to perform garbage collection of flows stored in the flow
database. A garbage collection procedure is required to free
up memory allocated to incomplete flows: if no segments of a
given flow are observed in between two garbage collections,
the flow is considered complete, and the flow status memory
used is put back in the reuse list. This is the only possible
flow termination definition when considering UDP/RTP flows,
given their connectionless properties; but this is also possible
considering TCP flows, when for example no connection
tear-down sequence is performed by the hosts (e.g., due
to host/network failure, or due to misbehaving hosts). The
inactivity timer is set by default to 5 minutes, which has been
shown to be a safe choice according to [17].

Output Module. The Output Module is a separate thread,
periodically activated to store measurements in the persistent
database. It manages the round robin database by converting
information stored in the internal histogram database, and
optionally dumps the histograms status on files before resetting
them. Finally, an asynchronous routine is used to update the
flow-level log, where the computed measurement indexes of
successfully tracked flows are added at each flow end.
Persistent Database. The Persistent Database is a collection
of files storing all measured indexes. RRD, histogram database
and layer-4 log database are then available to offer off-line
post-processing of information and to derive more complex
measurement indexes.

Visualization Module. The Visualization Module, a part of
the Tstat design, is a collection of post-processing scripts
that allow to easily extract information from the Persistent
Database; the most notable visualization module is a CGI Web
interface that allows to present historical data exploiting the
RRD capabilities.

As previously stated, Tstat has been engineered to run in
real-time: therefore both memory and CPU constraints have
been carefully addressed in its design. In particular, Tstat
avoid to relies to the OS memory management library, in
particular considering the free () function. Indeed, it is
well known that memory management operation are rather
expensive, and that it is not guaranteed that chunks of memory
freed by the free () function are actually made available
to the OS for later reuse. Therefore Tstat implements
internal memory reuse techniques that optimize memory usage
and avoid expensive library calls for memory allocation and
deallocation. Therefore, after the initial transient period during
which structures are allocated on the fly, the memory usage

becomes stable.

Considering flow identification, Tstat uses hash function
to identify if the packet currently under analysis belongs to
any of the tracked flows. The hash key is derived from the 5-
tuple that identifies the flow itself, and collisions are handled
by chaining (i.e., through the use of linked lists). While this
structure does not guarantee good worst case performance, it
represents a good balance in term of average performance and
simplicity, as we will show later. Indeed, while balanced binary
search trees do guarantee better worst case performance, nev-
ertheless we believe that i) the complexity in managing them
may actually overcome the worst-case benefits and ii) such
structures may be unnecessary for the average case, where the
maintenance overhead may further limit the performance.

III. PERFORMANCE EVALUATION

This section deals with the evaluation of the processing
capabilities of layer-4 analysis tools, considering Tstat as an
example. In the benchmarking setup we inspect the impact of
several parameters on the performance. Controlled parameters
range from the compiler flavor and optimization options to
the traffic measurement point, load and storage trace format.
Performance indexes are described in terms of both user-
centric indexes (such as CPU and memory usage, packets
and flows processing rates) as well as internal algorithm state
variable. In order to stress Tstat to the limit of its traffic
analysis capabilities we consider off-line processing only:
as we will show later, this choice will enable us to gather
useful, otherwise unknowable, insights on the limit of on-line
performance.

A. Testbed Description

All experiments have been performed on a PC, running
a GNU-Linux operating system with kernel version 2.4.29,
sporting two Intel Xeon CPUs clocked at 2.40GHz with 512
KB cache, equipped with 3 GB of RAM memory and several
IDE 7200-rpm hard-disks.

Performance Metrics
For each test execution, we report the following performance
indexes:
o general-purpose: elapsed execution time, instantaneous
CPU utilization, RAM memory occupation;
e output-oriented: packet processing rate m, flow process-
ing rate ¢ and output storage size;
e internal-state: number of iterations spent in the hash
search routine and average length of a TCP flow lookup.

These metrics allows us to inspect different aspects of the
traffic processing task: we will not only i) assess which kind
of networks, and under which level of congestion it is possible
to painlessly monitor with common hardware, but also ii) state
some software design guidelines, such as the impact of data
structure choice.

Off-line Performance
Though, as previously mentioned, Tstat performs on-line

analysis of traffic, our benchmarking will only involve off-line
analysis of real packet-level traces. This is due, first, to allow
running batch of tests on the same input, while inspecting input
parameters to the software. Second, but not less important, our
experience with on-line analysis showed us that the incoming
traffic rate, even when considering backbone traffic, never
saturated Tstat processing capabilities.

Therefore, if 7 off-line seconds are needed to process T’
seconds worth of captured trafficc we may conclude that
the on-line processing could accommodate about T'/7 times
more traffic. While we acknowledge that this is a very rough
estimate, nevertheless we point out that artificially generating
a T /7 more traffic would yield even rougher estimates, since,
given the intrinsic difficulty of the traffic generation, the
resulting traffic pattern would be hardly representative of a
real situation.

Input Network Traffic

We present results obtained through real traffic traces col-
lected from different networks. The first one is a packet-level
trace gathered from the Abilene Internet backbone, publicly
available on the NLANR Web site [18]. We will refer to
this dataset as ABILENE throughout the paper. The trace has
been collected on June 1st, 2004 at the OC192c Packet-over-
SONET link from Internet2 Indianapolis node toward Kansas
City. Peculiar of this trace is the large presence of very high-
speed transfers of long files, which generates very short spikes
of intense load above 2.5 Gbps. Similarly, quite anomalous
traffic patters, e.g., large presence of port scan attempt, are
present. These are due to the experimental traffic ABILENE
carries. Both previously described characteristics form a stress
scenario when considering layer-4 processing.

The second measurement point is located on the GARR
backbone network [19], the nation-wide ISP for research
and educational centers, that we permanently monitor using
Tstat. Results shown early in Figure 1 and Figure 2 refer to
this measurement point. The monitored link is a OC48 Packet-
over-SONET from Milano-1 to Milano-2 nodes. We selected a
trace collected the 15th of April 2005, in the following denoted
by GARR. GARR traffic trace is representative of typical today
traffic in which business, home and research traffic share the
same infrastructure.

Both GARR and ABILENE traces correspond to about two-
hours long period and include 80Bytes of packet headers
only; GARR traces occupy 46 GB of storage whereas ABI-
LENE amount to 36 GB of compressed data (141 GB uncom-
pressed!). Moreover, traces show different routing symmetry:
while the GARR trace reflects almost 100% of traffic sym-
metry, only 46% of ABILENE traffic is symmetric; this is of
particular relevance, since Tstat relies on the observation of
both DATA and ACK segments to track TCP flow evolution.
But if only “half” flow is observed, Tstat starts tracking the
flow anyway, consuming internal database resources until the

IDue to the size of ABILENE dataset, we were able to manage the trace
only in compressed format.

500k

400k

—————

11 u+c

300k

Packets Processing Rate [Pkt/sec]

=

—

k
—

=

a

200k

~0 2
8) a as | 22| % | EEQ 8
oY | xca g a 2 Toh B0 SLlx 2
BO G0 |82 |2 | 232 |£% | 2582
CC OPT SRC DST TRACE FMT ACTION

Fig. 4. Tstat Performance: Sensitivity to Different Parameters

flow is discarded by a garbage collection operation. Finally, the
average load is quite different for the two traces: on average,
GARR traffic rate is about 36 Kpps or 177 Mbps. ABILENE
traffic rate is more than 6 times higher, resulting in an average
rate slightly above 225 Kpps or 1.12 Gbps.

The third measurement point is located at the edge of the of
Politecnico campus LAN, which behaves thus as an Internet
stub. It is an OC4 AALS ATM link from Politecnico to the
GARR POP in Torino. We selected three different two-hour
long traces, starting namely at:

o POLINIGHT: Sunday the 23th of May 2004, at 4:00

e POLILIGHT: Monday the 19th of April 2004, at 18:00

o POLIBUSY: Monday the 10th of May 2004, at 10:00

These three traces —which correspond to a night, an after-work
and a busy-time period respectively— account for increasing
levels of congestion, allowing to gather the impact of the
different kind of traffic flowing through the same network.

B. Sensitivity Analysis

As a first experiment, we inspected the sensitivity of the
traffic processing time to several external conditions. Specifi-
cally, considering as performance metric the packet processing
rate m, we performed a batch of tests considering the following
parameters:

TABLE 1
PARAMETERS SENSITIVITY

Parameter Meaning Inspected Values

CcC C Compiler { Gcc, Icc }

OPT Compiler Options { 02, 03 }

SRC Input Device { RaM, HDD }

DST Output Device { RAam, HDD }

TRACE Trace Load { NIGHT, LIGHT, BUsY }
FMT Trace Format { pcap, erf }

ACTION Tstat Output { None, Histo, RRD, Both }

Each test has been repeated three times to get average
results, for a total number of 1152 tests. As reported in
Table II, we varied the compiler (CC), choosing -either
the GNU C Compiler version 3.2.2 (GcC) as well as the

Intel C Compiler version 8.1 (Icc). For either compiler,
we tested several optimization options (OPT) beside the
raw optimization level (i.e., O2, O3): after several pre-
liminary tests we ended up using the following compil-
ing options -finline-functions -funroll-all-loops
-march=pentium4 -mfpmath=sse, which yielded the best
performance. Moreover, we investigated the impact of the
trace storage device (SRC, DST): in our tests the input was
either stored on a non-volatile ext3 filesystem (HDD), or
on a raw device created using a Ramdisk (RAM). Similarly,
trace storage format (i.e., pcap or erf) has been also
considered (TRACE). Only POLI traffic traces have been taken
into account to reflect increasing levels of network congestion
(i.e., NIGHT, LIGHT, BUSY). Finally, the various combinations
of processing output (ACTION) (i.e., None, Histogram, RRD,
Both) were directed to either a ext3-formatted hard-disk or
to an ext3 RAM device.

Figure 4 reports the sensitivity results in terms of the
achieved packet processing rate for a given parameter value,
obtained aggregating the tests irrespectively of all other pa-
rameter values. Denoting by p and o the mean and standard
deviation of the packet processing rate m respectively, the line
inside the box reports p, the boxes delimit p 4o, and the lines
outside the box indicate the maximum and minimum values
achieved. On the right axis, the average p and bounding box
u=£o values achieved over all the tests are reported as reference
values.

In a glance, Tstat performance ranges from a minimum
of 210 Kpps up to 530 Kpps. Considering typical packet size,
this is equivalent to about 1.7 Gbps - 4.2 Gbps range. This is
in accordance with the previously mentioned fact that actual
load of OC48 backbone traffic poses no problem to real-time
layer-4 measurement.

In more details, considering compiler version and optimiza-
tion options (CC, OPT), Figure 4 allows to conclude that they
play a marginal (though non negligible) role: the use of IcC
with optimization level two (-O2) may bring a 3.6% gain with
respect to the other compiler settings.

Considering Ramdisk vs HDD storage (SRC, DST), the
use of Ramdisk brings almost negligible advantages in most
cases, but in some tests performance actually suffered rather
than benefiting of its use. On the input side, this can be
explained taking into account Linux aggressive caching policy:
it is evident that the operating system is already performing
everything possible to leverage the input task, thus an explicit
caching by the use of RAM input storage is actually useless.
Considering the output generation, the output data structure
produced by Tstat are stored on files. This implies the need
for a filesystem, rather than a raw device (i.e., a device merely
storing binary data), which introduce an additional overhead.
Second, the amount of output is much smaller than the original
packet trace. Therefore the O.S. caching algorithms almost
overcome the possible output bottleneck. However, while the
cache consolidation operations are performed via DMA by the
Hard Disk Controller, the same operations are carried over by
the CPU when Ramdisk is involved, thus stealing CPU cycles

50MB

None RRD Histo Histo+RRD

500k - m

40MB
400k - | |7

30MB
300k

20MB
200k -

Packet Process Rate
Output and RAM Size

100k | 10MB

/3 Packet Rate mmmm RAM Size s Output Size

Fig. 5. Best-Case Performance for Different Input Traffic and Output Types

to the packet processing task.

Considering the trace type (TRACE), we observe that as
intuitively expected, the impact of the specific traffic is also
very important: NIGHT traces are processed 1.26 and 1.32
times faster than LIGHT and BUSY traces respectively: indeed,
the higher the traffic rate, the larger the amount of flows have
to be analyzed, the larger the internal data structures as well.

Considering the trace file format (FMT), we observe that
it deeply affects the performance: the use of the erf format
bring a gain of about 9.7% with respect to pcap, which is
essentially due to smaller library overhead.

Finally, considering the output produced by Tstat (AcC-
TION), it clearly impacts the processing performance. This
is mainly tied to the amount of data that has to be stored:
when no-output is required, the traffic is processed at the
highest possible rate, while producing both RRD and histogram
databases limits the overall processing rate.

C. The Cost of Edge Traffic Analysis

Based on the sensitivity results, we simplify the reminder of
the analysis by restricting our attention to the best combination
of options. We consider from now on ICC compiler, with -O2
optimization option, erf trace file format, and HDD storage
for both input and output. We further investigate the impact
of the TRACE type still considering traces collected at the
edge node of our campus LAN. Additional results in terms
of RAM utilization and output storage requirements will be
investigated.

The results referring to experiments that comply to above
selection criteria are reported on Figure 5: the picture shows
the packet processing rate achieved averaging three different
runs over the same trace (left y-axis) using light-gray, thin
bars; bars refer to NIGHT, LIGHT, BUSY trace respectively.
Total memory utilization and persistent database size averaged
over all traces and runs (right y-axis) are reported using gray
and black bars respectively. Finally, results are grouped to dis-
tinguish them according to the persistent database information
recorded (ACTION).

Interesting indications can be gathered about the packet
processing rates. First, it should be noticed that the overhead
introduced by RRD is marginal, since performance of RRD vs
Null output are very similar (the same holds for periodical
Histogram only vs Both output). This is a very important
observation, since it suggests that the RRD module leverages
the storage issue, allowing ever-lasting monitoring, and it also
scales very well with the traffic load. Periodically dumping
the histogram database and logging each flow measurement
has instead a larger impact on the performance, which decrease
by about 20%. This is related to the overhead due to persistent
storage maintenance on files, as previously noticed. Second, let
us consider the case where all the processing computations are
performed but the output is discarded (leftmost bars): there is a
significant (i.e., on the order of 100 Kpps) difference between
nightly and daily traffic, but the relative difference between
nightly and heavily loaded network is limited, as it is still
possible to process about 400 Kpps, or about 2 Gbps. This
shows that the kind of traffic under analysis has a large impact,
but the performance impact is limited.

Considering memory requirements, there is marginal dif-
ference respected to output type, since the same internal
database is maintained. Indeed, memory usage depends on
the traffic load, since the internal database size increase with
the number of contemporary active flows: the lowest memory
usage, corresponding to the NIGHTLY traffic is about 29 MB
compared to the 38 MB of the BUSY period. We can then state
that there is no particular memory requirement to track layer-4
measurement indexes on edge nodes.

Finally, considering the output size, we notice that it is
unrelated to the specific input trace: indeed, while RRD storage
amount is fixed a priori, the histogram output size depends on
the actual trace duration rather than traffic mixture, given the
periodical nature of the dump process. Therefore it is possible
to easily predict the size of generated output.

D. The Cost of Backbone Traffic Analysis

While the previous section focused on the impact of dif-
ferent levels of congestion on the same edge-network traffic,
in this section we extend our analysis by inspecting the pro-
cessing performance of two different backbone traces, namely
ABILENE and GARR. To simplify the analysis, we further limit
the type of processing to either no-output, focusing on pure-
processing performance, or RRD output, investigating what
kind of link/traffic can be persistently monitored.

Table II reports detailed performance figures relative to both
ABILENE and GARR traces: total elapsed time, pure CPU
time, flow and packet processing rate (as usual, measured
according to the total elapsed time), memory and CPU usage
are reported. We define the processing speed-up as the ratio
of the trace duration over the CPU time required to complete
the analysis. Results confirm that Tstat painlessly processes
GARR trace and that persistent ever-lasting monitoring is
feasible, as in our personal experience Tstat never suffered
performance problems during real-time monitoring of the
GARR link. Indeed, we point out only 18 minutes were needed

TABLE II
FEASIBILITY ANALYSIS OF PERSISTENT BACKBONE LINK MONITORING

Backbone | Output T) Elapsed CPU Time Speed-up Memory CPU
Trace Type [Kpps] [Kfps] | [h:m:s] [h:m:s] [MB] %
GARR Null 25235 11.00 | 0:18:33 0:16:16 8.06 476 96.7

RRD 233.86 10.20 | 0:20:01 0:16:32 7.93 478 98.0

ABILENE Null 255.79 5.94 2:00:42 1:26:30 1.49 1047 74.0

RRD 255.01 5.92 2:01:04 1:26:37 1.49 1049 74.0

to process more than two-hour worth of traffic, thus the
processing was much faster than the real-time traffic arrival.
Even in the ABILENE case, though the gain margin is scarcer
since a significant portion of the CPU power has been devoted
to the input decompression, Tstat processing is still faster
than real-time traffic arrival. Indeed, by considering the pure
CPU time devoted to the user-space process rather than the
total elapsed time, a speed speed-up of about 1.5 can be
envisioned. Notice that the use of dedicated capture cards
(mandatory to monitor OC192 links) would further lessen the
CPU from IO input processing, allowing for even more traffic
to be processed.

Considering internal parameters, we are interested to double
check the effectiveness of the simple hash routines used to
manage the internal flow database. We measured therefore the
average lookup rate, considering a hash table of 1,000,000
entry. Results show that the average lookup rate is about 1.32
considering GARR trace (which account for about 300,000
tracked flows per unit of time) and 3.27 considering ABILENE
trace (which accounts for about 800,000 tracked flows); the
former result implies that the use of balanced search trees
would prove useless. Note that, in the ABILENE case, it could
be sufficient to use larger hash table to reduce the average
number of collisions, which has not been done in order to
allow for fair cross-trace comparison.

IV. CONCLUSIONS

In this paper we presented a thorough performance evalua-
tion of Tstat, a measurement tool which allows to derive per-
formance indexes at the transport layer by tracking TCP/UDP
flows during their lifetime.

By using real traffic traces captured from simple edge node
up to backbone OC192 links, we evaluated the impact of
several parameters, such as software design choice, compi-
lation option, output generation overhead, etc. Results show
that with common hardware it is possible to perform real-
time measurement up to 2.5 Gbps traffic without performance
issues, which opens the possibility of performing real-time
traffic analysis on today commonly used backbone links.

We believe that the insight gathered can be extended to
more general “layer-4” problems, such as the ones faced by
intrusion detection systems, firewalls, load balancers, etc.,
given that operations required to perform flow tracking are
very similar.

V. ACKNOWLEDGMENTS

This work was partly funded by the European Community
“EuroNGI” Network of Excellence, and partly by the Italian
MIUR PRIN project “MIMOSA”. We also would like to thank
the GARR for allowing us to monitor some of their backbone
links, the Politecnico di Torino network facilities CESIT for
their patience in supporting the monitoring at our campus
LAN, and finally the people from NLANR for providing the
research community their invaluable traces.

REFERENCES

[1]1 R. Caceres, P. Danzig, S. Jamin and D. Mitzel, “Characteristics of wide-
area TCP/IP conversations,” In Proc. of ACM SIGCOMM’91, Zurich,
Switzerland, 1991, pp. 101-112.

[2] V. Paxons, “Empirically Derived Analytic Models of Wide-Area TCP
Connections,” IEEE/ACM Transactions on Networking, V. 2, NO. 4,
1994, pp: 316-336.

[3] S.Jaiswal, G. Iannaccone, C. Diot, J. Kurose and D. Towsley. “Inferring
TCP Connection Characteristics Through Passive Measurements,” In
Proc. of IEEE INFOCOM’04, Hong Kong, March 2004, pp. 1582-1592.

[4] L. Li, M. Thottan, B. Yao and S. Paul, “Distributed Network Monitoring
with Bounded Link Ultilization in IP Networks,” In Proc. of IEEE
INFOCOM’03, San Francisco, Ca, March 2003, pp. 1189-1198.

[5] M. Jain and C. Dovrolis, “End-to-end Estimation of the Available
Bandwidth Variation Range,” In Proc. of ACM SIGMETRICS’05, Banff,
Canada, June 2005.

[6] NLANR Measurement Group, “Towards a systemic understanding of the
internet organism: a framework for the creation of a network analysis
infrastructure”, http://moat .nlanr.net/, 1998.

[7] S. A.T. Laboratories, Ip monitoring project (ipmon), http://ipmon.
sprintlabs.com/, 2002.

[8] M. Mellia, R. Lo Cigno and F. Neri, “Measuring IP and TCP behavior
on edge nodes with Tstat”, Computer Networks, Vol. 47, No. 1, pp.
1-21, Jan. 2005.

[9] V. Paxson, “Bro: A system for detecting network intruders in real-time”,
Computer Networks, Vol. 31, No. 23, pp. 2435-2463, 1999.

[10] M. Roesch. “Snort: lightweight intrusion detection for network,” In
Proc. of the 13th USENIX Systems Administration Conference (LISA’99),
Seattle, WA, November 1999.

V. Srinivasan, G. Varghese, S. Suri, M. Waldvogel, “Fast and scalable
layer four switching”, In Proc. of ACM SIGCOMM’98, Vancouver, BC,
Canada, pp. 191-202, August 1998.

S. Ostermann, Tcptrace Web site http://www.tcptrace.org,
2005.

Endace Web site, http://www.endace.com, 2005.

M. Mellia and D. Rossi, Tstat Web Site, http://tstat.tlc.
polito.it, 2005.

T. Oetiker, RRDtools Web site, http://people.ee.ethz.ch/
~“oetiker/webtools/rrdtool, 2005.

S. McCanne, C. Leres, V. Jacobson, pcap Web site, http://www.
tcpdump . org, 2005.

G. Iannaccone, C. Diot, I. Graham, N. McKeown, “Monitoring very
high speed links”, In Proc. of ACM Internet Measurement Workshop,
San Francisco, CA, 2001, pp.267-271.

Abilenelll packet trace, http://pma.nlanr.net/Special/
ipls3.html

GARR Network, http://www.noc.garr.it/mrtg/RT.TO1.
garr.net

(11]

(12]

[13]
[14]

[15]
[16]

(17]

(18]

[19]

