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Abstract—In this paper we focus on passive measurements of
TCP traffic, main component of nowadays traffic. We propose
a heuristic technique for the classification of the anomalies that
may occur during the lifetime of a TCP flow, such as out-of-
sequence and duplicate segments. Since TCP is a closed-loop
protocol that infers network conditions by means of losses and
reacts accordingly, the possibility of carefully distinguishing the
causes of anomalies in TCP traffic is very appealing, since it
may be instrumental to the deep understanding of TCP behavior
in real environments and to protocol engineering as well. We
apply the proposed heuristic to traffic traces collected at both
networks edges and backbone links. By studying the statistical
properties of TCP anomalies, we find that their aggregate exhibits
Long Range Dependence phenomena, but that anomalies suffered
by individual long-lived flows are on the contrary uncorrelated.
Interestingly, no dependence to the actual link load is observed.

I. INTRODUCTION

In the last ten years, the interest in data collection, mea-
surement and analysis to characterize Internet traffic behavior
increased steadily. Indeed, by acknowledging the failure of tra-
ditional modeling paradigms, the research community focused
on the analysis of the traffic characteristics with the twofold
objective of i) understanding the dynamics of traffic and its
impact on the network elements and ii) finding simple, yet
satisfactory, models for the design and planning of packet-
switched data networks, like the Erlang teletraffic theory in
telephone networks.

By focusing on passive traffic characterization, we face
the task of measuring Internet traffic, which is particularly
daunting for a number of reasons. First, traffic analysis is made
very difficult by the correlations both in space and time, which
is due to the closed-loop behavior of TCP, the TCP/IP client-
server communication paradigm, and the fact that the highly
variable quality provided to the end-user influences her/his
behavior. Second, the complexity of the involved protocols,
e.g. TCP itself, is such that a number of phenomena can
be studied only if a deep knowledge of the protocol details
is exploited. Finally, some of the traffic dynamics can be
understood only if the forward and backward directions of
flows are jointly analyzed — which is especially true for
the detection of erratic flows behavior. Starting from [1],
where a simple but efficient classification algorithm for out-of-
sequence TCP segments is presented, this work aims at identi-
fying and analyzing a larger subset of phenomena, including,
e.g., network duplicates, unneeded retransmissions and flow
control mechanisms triggered or suffered by TCP flows.

The proposed classification technique has been applied to
a set of real traces collected at different measurement points.

Results on both the network core and at the network edge
show that the proposed classification allows to inspect a
plethora of interesting phenomena: e.g., the limited impact
of the daily load variation on the occurrence of anomalous
events, the surprisingly large amount of network reordering,
the correlation among different phenomena, to name a few.

II. METHODOLOGY

The methodology adopted in this paper furthers the ap-
proach followed in [1], in which the authors present a simple
classification algorithm of out-of-sequence TCP packets and
apply it to analyze the Sprint backbone traffic; the algo-
rithm discriminates among out-of-sequence segments due to
i) necessary or unnecessary packet retransmissions by the
TCP sender, ii) network duplicates, or iii) network reordering.
Similarly, we adopt a passive measurement technique and,
building over the same idea, we complete the classification rule
to include other event types. Besides, we not only distinguish
among the other possible kinds of out-of-sequence or duplicate
packets, but we also focus on the cause that actually triggered
the segment retransmission by the sender.

As previously mentioned, we assume that both directions
of a TCP flow are available: thus, both data segments and
ACKs are analyzed; moreover, both the IP and TCP layers
are exposed, so that the TCP sender status can be tracked.
Figure 1-a sketches the evolution of a TCP flow: connection
setup, data transfer, and tear-down phases are highlighted. It
is worth pointing out that the measurement point (or sniffer)
can be located anywhere in the path between the client and
the server; furthermore, as shown in the figure, the sniffer
can be close to the end host when measurements are taken
at the network edge (as it happens, e.g., on campus LANs),
whereas this bias vanishes when the sniffer is deployed on the
core of the network (as it happens in the case of backbone
traces). Since we rely on the observation of both data and
ACK segments to track TCP flow evolution, a problem may
arise when asymmetric routing forces data and ACK segment
to follow two different paths: in such cases, we ignore the
“half” flows.

A TCP flow starts when the first SYN from the client
is observed, and ends after either the tear-down sequence
(the FIN/ACK or RST messages), or when no segment is
observed for an amount of time larger then a given threshold'.

'The tear-down sequence of flows under analysis is possibly never ob-
served: to avoid memory starvation we use a 15-minutes timer, which is
sufficiently large [2] to avoid discarding on-going flows.
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Fig. 1.

By tracking both flow directions, the sniffer correlates the
sequence number of TCP data segments to the ACK number
of backward received acknowledgments and classifies the
segments as:

e In-sequence: if the sender initial sequence number of the
current segment corresponds to the expected one;

o Duplicate: if the data carried by the segment have already
been observed before;

o Out-of-sequence: if the sender initial sequence number is
not the expected one, and the data carried by the segment
have never been observed before.

The last two entries are symptomatic of some anomaly oc-
curred during the data transfer: to further discriminate such
anomalous events, we devise a fine-grained heuristic classi-
fication and implement it in Tstat [3], which we then use
to analyze the collected data. The decision process followed
to classify anomalous events makes use of the following
variables:

e RTT.,in: Minimum RTT since the flow started;

e RT: Recovery Time is the time elapsed between the time
the current anomalous segment has been observed and
the time the segment with the largest sequence number
has been received;

o AT: Inverted-packet gap is the difference between the
observation time of the current anomalous segment and
of the previously received segment;

e RTO: sender Retransmission Timer value, as in [4];

e DupAck: number of duplicate ACKs observed on the
reverse path.

A. Heuristic Classification of TCP Anomalies

Following the flow diagram of Figure 1-b, we describe
the classification heuristic. Given an anomalous segment, the
process initially checks if the segment has already been seen
by comparing its payload sequence number with those carried

Evolution of a TCP flow and the RTT estimation process (a) and anomalous events classification flow-chart (b).

by segments observed so far: thus, the current segment can
be classified as either duplicate or out-of-sequence. In the first
case, following the left branch of the decision process, the
IP identifier field of the current packet is compared with the
same field of the original packet: in case of equality, then the
anomalous packet is classified as Network Duplicate (Net.
Dup.). Network duplicates may stem from malfunctioning
apparatuses, mis-configured networks, or, finally, by unnec-
essary retransmissions at the link layer. Differently from [1],
we classify as network duplicate all packets with the same
IP identifier regardless of AT: indeed, there is no reason
to exclude that a network duplicate may be observed at any
time, and there is no relation between the RTT and the time
a network can produce some duplicate packets.

When the IP identifiers are different, the TCP sender may
have performed a retransmission. If all the bytes carried by the
segment have already been acknowledged, then the segment
has successfully reached the receiver, and this is an unneeded
retransmission, which has to be discriminated further. Indeed,
the window probing TCP flow control mechanism performs
“false” retransmissions: this is done to force the immediate
transmission of an ACK so as to probe if the receiver window
RWND, which was announced to be zero on a previous ACK,
is now larger than zero. Therefore we classify as retransmis-
sion due to Flow Control (FC) those segments for which:
i) the sequence number is equal to the expected sequence
number decreased by one, ii) the segment payload size is of
zero length, and iii) the last announced RWND in the reverse
ACK flow was equal to zero. This is a new possible cause
of unneeded retransmissions which was previously neglected
in [1].

Otherwise, the unnecessary retransmission could have been
triggered because either a Retransmission Timer (RTO) has
fired, or the Fast Retransmit mechanism has been triggered. We
identify three situations: i) if the recovery time is larger than



the retransmission timer (RT > RTO), the segment is classified
as an Unneeded Retransmission by RTO (Un. RTO); ii) if 3
duplicate ACKs have been observed, the segment is classified
as an Unneeded Retransmission by Fast Retransmit (Un.
FR); iii) otherwise, if none of the previous conditions holds,
we do not know how to classify this segment and we are forced
to label it as Unknown (Unk.). Unneeded retransmissions may
be due to a misbehaving source, a wrong estimation of the
RTO at the sender side, or, finally, to an ACK loss on the
reverse path; however, distinguishing among these causes is
impossible by means of passive measurements.

Let us now consider the case of segments that have already
been seen but have not been ACKed yet: this is possibly the
case of a retransmission following a packet loss. Indeed, given
the recovery mechanism adopted by TCP, a retransmission
can occur only after at least a RTT, since duplicate ACKs
have to traverse the reverse path and trigger the Fast Re-
transmit mechanism. When the recovery time is smaller than
RTT i, then the anomalous segment can only be classified
as Unknown?; otherwise, it is possible to distinguish between
Retransmission by Fast Retransmit (FR) and Retransmis-
sion by RTO (RTO) adopting the same criteria previously
used for unneeded retransmissions. Retransmissions of already
observed segments may be due to data segments loss on the
path from the measurement point to the receiver, and to ACK
segments delayed or lost before the measurement point.

Finally, let us consider the right branch of the decision
process, which refers to out-of-sequence anomalous segments.
Out-of-sequence can be caused either by the retransmission of
lost segments, or network reordering. Since retransmissions
can only occur if the recovery time RT is larger than RTT iy,
by double checking the number of observed duplicate ACKs
and by comparing the recovery time with the estimated RTO,
we can distinguish retransmissions triggered by RTO and FR
or we can classify the segment as an unknown anomaly. On
the contrary, if RT is smaller than R7T\,,, then a Network
Reordering (Reord) is identified if the inverted-packet gap
AT is smaller than RTTy,;,. Network reordering can be due
to either load balancing on parallel paths, or to route changes,
or to parallel switching architectures which do not ensure in-
sequence delivery of packets [5].

B. RTT,,;, and RTO Estimation

The algorithm described so far needs to set some thresh-
olds from the packet trace itself based on some parameter
estimation whose values may not be very accurate, or even
valid, when classifying the anomalous event. Indeed, all the
measurements related to the RTT estimation are particularly
critical,. RTT measurement is updated during the flow evolu-
tion according to the moving average estimator standardized
in [4]: given a new measurement m of the RTT, we update
the estimate of the average RTT by mean of a low pass filter

2In [1] authors use the average RTT; however, being each RTTpossibly
different than the average RTT, and in particular smaller, we believe that the
use of the average RTT forces a uselessly larger amount of unknown.
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Fig. 2. CDFs of the ratio between the inverted packet gap AT over the
estimated RTTp,in (outset) and of the ratio between the recovery time RT
over the actual RTO estimation (inset).
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Since the measurement point is co-located neither at the
transmitter nor at the receiver, the measure of RT7T is not
directly available. Therefore, to get an estimate of the RTT
values, we build over the original proposal of [1]. In particu-
lar, denote by RTT(s,d) the Half path RTT sample, which
represents the delay at the measurement point between an
observed data segment flowing from source s to destination d
and the corresponding ACK on the reverse path, and denote
by RTT(d,s) the delay between the ACK and the following
segment, as shown in Figure 1-a.

From the measurement of RTT(s,d) and RTT(d,s) it is
possible to derive an estimate of the total round trip time
as RTT = RTT(s,d) + RTT(d, s); given the linearity of the
expectation operator E[-], the estimation of the average round
trip time E[RTT| = E[RTT(s,d)] + E[RTT(d, s)] is unbiased.
Furthermore, the RTT standard deviation, std(RTT), can be
estimated following the same approach, given that in our sce-
nario RTT(s,d) and RTT(d, s) are independent measurements.
Finally, given E[RTT] and std(RTT), it is possible to estimate
the sender retransmission timer as in [4], and the minimum
RTT:

] = (1—«)E[RTT]+ o m where o € (0, 1) is equal to

RTO =
RTTin =

max(1, E[RTT] + 4std(RTT))
min(RTT(s,d)) + min(RTT(d, s))

In general, since RTTy,i, < min(RTT), the latter equation
gives a conservative estimate of the real minimum RTT,
leading to a conservative algorithm that increases the number
of anomalies classified as unknown rather than risking some
mis-classifications.

In the following, a set of measurements are presented
to inspect the impact of RTT,;, and RTO estimation. The
former is involved in the classification of the network re-
ordering anomalies that may occur when identifying two
out-of-sequence segments separated by a time gap smaller
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than RTT,,;,. The outer plot of Figure 2 reports the typical®
Cumulative Distribution Function (CDF) of the ratio between
the inverted packet gap AT and the value of the RTT,,;,, when
considering anomalous events classified as network reordering
only. It is easy to gather that AT is much smaller than the
RTTin, which suggests that i) the initial choice of RT Ty, is
appropriate, and that ii) the conservative estimation of R77T iy,
does not affect the classification.

The inset of Figure 2 reports the CDF of the ratio between
the actual Recovery Time RT and the corresponding estimation
of the RTO relative to retransmissions by R7TO events only.
The CDF confirms that RT > RTO holds, which is a clear
indication that the estimation of the RTO is not critical.
Moreover, it can be noted that about 50% of the cases have
a recovery time which is more than 5 times larger than the
estimated R7O. This apparently counterintuitive result is due
to the RTO back-off mechanism implemented by TCP (but not
considered by the heuristic), which doubles the RTO value at
every retransmission of the same segment. Not considering the
back-off mechanism during the classification leads to a robust
and conservative approach.

3Since the result is similar across all the analyzed traces, we report the
results referring to a single dataset, namely GARR’05 traces.

III. MEASUREMENT RESULTS

In this section we present results obtained through traffic
traces collected from different networks. The first one is a
packet-level trace gathered from the Abilene Internet back-
bone, publicly available on the NLANR Web site [6]. The
trace, which is 4 hours long, has been collected on June 1st,
2004 at the OC192c Packet-over-SONET link from Internet2’s
Indianapolis node toward Kansas City. The second measure-
ment point is located on the GARR backbone network [7],
the nation-wide ISP for research and educational centers, that
we permanently monitor using Tstat. The monitored link is a
0OC48 Packet-over-SONET from Milano-1 to Milano-2 nodes,
and statistics reported in the following refer to the month of
August 2005. The third measurement point is located at the
sole egress router of Politecnico campus LAN, which behaves
thus as an Internet stub. It is a OC4 AALS5 ATM link from
Politecnico to the GARR POP in Torino. Traces show different
routing symmetry: while the Politecnico and GARR traces
reflect almost 100% of traffic symmetry, only 46% of Abilene
traffic is symmetric; this is of particular relevance, since Tstat
relies on the observation of both data and ACK segments to
track TCP flow evolution.

In the following, we will arbitrarily use “In” and “Out”
tags to discriminate between the traffic directions of GARR
and Abilene traces: since the measurement point is located in
the backbone, neither an inner nor an outer network regions
actually exists.

A. Statistical Analysis of Backbone Traffic

Figure 3 depicts the time evolution of the volume of anoma-
lous segments classified by the proposed heuristic technique
applied to the GARR traffic; in order to make plots readable,
only the main causes of anomalies, i.e., RTO and network
reordering, are explicitly reported, whereas the other kinds of
anomalies are aggregated. Measurements are evaluated with
different granularities over different timescales: each point cor-
responds to a 5 minute window in the hourly plot, a 30 minute
window for both daily and weekly plots and a 2 hour interval
in the monthly plot. Both link directions are displayed in a
single plot: positive values refer to the “Out” direction, while
negative to “In”. The plot of the entire month clearly shows a
night-and-day trend, which is mainly driven by the link load.
The trend is less evident at finer time scales, allowing us to
identify stationary periods during which advanced statistical
characterization can be performed. The same monthly dataset
is used in Figure 4, which reports in top plot the volume of
anomalies normalized over the total link traffic, and in bottom
plot the anomaly breakdown, i.e., the amount of anomalies
of each class normalized over the total number of anomalous
events. Labels report, for each kind of anomaly, the average
occurrence over the whole period obtained aggregating both
traffic directions. The amount of RTO accounts for the main
part of anomalous events, being almost 70%. This is not
surprising, since RTO events correspond to the most likely
reaction of TCP to segment losses: indeed, Fast Retransmit is
not commonly triggered, since only long TCP flows, which
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Fig. 5. Hurst parameter estimate for different anomalies and traces.

represent a small portion of the total traffic, can actually
use this feature [9]. Packet reordering is also present in a
significant amount. The average total amount of anomalous
segments is about 5% considering Out traffic direction, and
about 8% considering In direction, with peaks ranging up to
20%.

Besides the precise partitioning of such events, it is in-
teresting to notice that the periodical trend exhibited by the
absolute amount of anomalies observed early in the monthly
plot of Figure 3, almost completely vanishes when considering
the normalized amount shown in Figure 4. Thus, while the
total amount depends on the traffic load, the percentage of
anomalies seems quite independent on the load. This is an
interesting finding that clashes with the usual assumption that
the probability of anomalies and segment losses increases
with load. Very similar results were also obtained for the
Abilene trace, confirming that not only the percentage of
anomalies over the total amount of traffic, but also the anomaly
breakdown remain steadily the same even when the amount
of anomalies over the link load exhibits large fluctuations.
An intuition of the possible cause of such counterintuitive
result relates it to the greedy nature of TCP, which pushes
the instantaneous offered load to 1, therefore producing packet
losses. Indeed, even if the average offered load is much smaller
during off-peak periods, congestion may arise on bottleneck
links (i.e., possibly at the network access) when there are
active TCP flows.

Another interesting statistics we can look into is the cor-
relation structure of the time series counting the number of
anomalies per time unit. Though this could be presented in
many different ways, we decided to use the Hurst parameter
H as a compact index to identify the presence of Long Range
Dependence (LRD) in the series. The estimation of H has
been carried over whenever it has been possible to identify
stationary time windows. In particular, this holds for the two
backbone links when considering periods of a few hours, while
this was not verified on campus LAN traces, due to the much
smaller number of events. The estimate of the Hurst parameter
H, measured through the wavelet based estimator [10], is
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g. 6. Time plot of anomalous events for the selected elephant flow.
depicted in Figure 5 for different kinds of anomalies, measure-
ment points and traffic directions. Roughly speaking, H = 0.5
hints to uncorrelated processes, while increasing values of
H € [0.5,1] are symptomatic of increasing correlation in the
process, with values H > 0.7 usually considered typical of
LRD. In all cases, H is considerably higher than 0.5, meaning
that these series are LRD. Moreover, H for the Reordering and
FR series is smaller than for the RTO series, for all traces and
traffic directions.

B. Analysis of a Single Elephant Connection

Other interesting observations can be drawn by focusing on
a specific network path, where it can be assumed that network
setup is homogeneous: in particular, we consider the longest
TCP flows that has been measured on our campus LAN.
The longest “elephant” that we ever observed corresponds to
a large file download from a host in Canada which lasted
about ten hours. Figure 6 plots a set of time series regarding
the flow anomalies, where each series corresponds to the
occurrence of events of one of the anomalies identified by
the proposed heuristic technique. First of all, we point out
that, while each time series is non-stationary, the aggregated
series is stationary. Then, observe that the largest number of
anomalies refers to RTO and FR, and this holds for the whole
flow lifetime. It is worth noticing that typically, while the
number of RTO increases, the number of FR decreases (and
vice-versa): high numbers of RTO probably correspond to high
levels of congestion, driving the TCP congestion control to
shrink the sender congestion window, so that the chance of
receiving three dup-ACKs is small. Similar behaviors were
observed for other very long elephants not shown here for the
sake of brevity.

No network reordering has been identified during the whole
flow lifetime. In our experiments we observed that some
flows do not suffer from network reordering at all, while
others present several network reordering events: this behavior
suggests that network reordering is path dependent, and a
similar reasoning applies to network duplicate events.

Some of the anomalies could not be classified other than
Unknown. Investigating further the reasons of such misiden-



tification, we suppose that either the sender was triggering
FR with a number of Duplicate ACKs smaller than 3, or that
the RTO value estimated by the sender was smaller than the
RTO estimation at the measurement point. Notice again that,
as we already mentioned, our classification strictly follows the
TCP standards, avoiding mis-classifications, at the price of the
increase of unidentified events.

We now focus on the fluctuation of the rate and the statistical
properties of the counting process of i) the received packets
per time unit and ii) the anomalous events per time unit, when
the time unit is 100 m long. We analyze the scaling behavior
of the data through the Multi Resolution Analysis (MRA) [11]
with the code provided in [12]; according to MRA, both these
processes are stationary: moreover, from our measurements,
stationarity usually holds for long flows in general. Figure
7 depicts the log-scale diagram for both the considered time
series to estimate the scaling exponents [10]. The diagram
reports the estimate of the correlation of the considered
process: an horizontal line is symptomatic of an uncorrelated
process, while linear slopes for large scales have to be read as
signs of high correlation. Therefore, from Figure 7 we observe
that the anomalous events that TCP handles are not correlated.
On the contrary, as already observed on traffic aggregates [10],
we found the traffic generated by the elephant flow is highly
correlated for the whole flow lifetime. The slope of this curve
leads to an estimation of the parameter H about 0.74;

IV. CONCLUSIONS AND DISCUSSION

In this paper, we have defined, identified and studied TCP
anomalies, i.e., segments received either out-of-sequence or
duplicate. We have extended and refined the heuristic orig-
inally proposed in [1], and applied it to real traffic traces
collected at both network edges and core links. By studying
the statistical properties of these phenomena, we can state
few guidelines to understand the stochastic properties of TCP
traffic. First, we observed that, though the absolute amount of
anomalies highly depends on the link load, both its relative
amount over the total traffic and the anomaly breakdown are
almost independent from the current load. This interesting
finding clashes with the usual assumption that the probability
of anomalies and segment losses increases with load.

Second, we have shown that aggregated anomalies at any
Internet link are correlated, as clearly shown by the estimation
of the Hurst parameter H. Nevertheless, when considering
individual flows, we observed that the anomalies arrival pro-
cess is on the contrary uncorrelated, even though the general
packet arrival process generated by the same flow is known
to be highly correlated, as we experimentally verified. The
correlation exhibited by the aggregated anomalies is intuitively
tied to the duration of their causes (i.e., congestion periods,
path reordering, etc.) which may last for large timescales.
When considering an individual flow, the sub-sampling process
induced by packet arrivals (i.e., the process observed by flow
packets crossing a particular node/link/path), and the conges-
tion control mechanisms adopted by TCP tend to uncorrelate
the process of anomalous segments observed by the flow itself.
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Fig. 7. Energy plots for the time series of the number of segments and the
number of out of orders within the selected elephant flow.

Indeed, since the traffic composition comprises a large number
of very short flows and a small number of long-lived flows,
only a very small fraction of anomalous segments observed
over a link is due to a single flow. Thus, we can conclude
that, even though there is high correlation in the aggregate
process, its impact on single flows is marginal.
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