
Gambling Heuristic on a Chord Ring
Dario Rossi

Politecnico di Torino – Dipartimento di Elettronica
dario.rossi@polito.it

Ion Stoica
University of California, Berkeley – CS Division

istoica@cs.berkeley.edu

Abstract— Chord routing is greedy and non-symmetric, and is
based on a skiplist-like data structure, whose entries are known
as fingers. This work explores the benefits arising from a modified
greedy lookup strategy that, without introducing any additional
communication overhead, simply exploits the implicit symmetry
knowledge intrinsic to the highly structured Chord ring. Through
extensive simulation on a dynamic peer environment, we show a
practical and feasible solution that actually boosts DHT lookup
performance under a wide range of scenarios.

I. INTRODUCTION

The aim of this work is to propose a general and viable
approach for Distributed Hash Tables (DHTs) that is able to
cope with both churn, i.e., the continuous change in system
membership, as well as changes in the system size. Though
our mechanism can be adapted to different DHT protocols, this
paper presents its application to Chord [1]. The performance
of Chord heavily depends, as for any other DHT system,
on the parameters setting, which are usually statically tuned
according to i) system size, ii) churn rate and iii) in reason of
the tradeoff between the cost that we are willing to pay for the
desired level of performance. However, although peer-to-peer
system size is usually assumed to be roughly constant over
time, this may be a rather simplistic assumption: therefore, it
is important to asses the impact of the network size variation
on the performance achieved for different static configurations
of the system. Another critical point to stress it that the
simple increase of the network connectivity, e.g., through
extension of the peer routing tables, may not represent a valid
solution at all: indeed, increasing the amount of structured
data without increasing its update rate –and thus the associated
maintenance overhead– may yield under certain circumstances
to performance degradation. Therefore, to take into account
the aforementioned problems, we propose an extremely simple
mechanism that, without additional communication overhead,
dynamically adds some useful soft-state entries to the peers
routing tables. The intuition behind the approach is that the
soft-state entries can naturally cope with varying-size systems,
as well as significantly ameliorate the routing performance.
The rest of the paper is organized as follows. Sec. II describes
the proposed modification to the greedy Chord routing, while a
preliminary analysis of the system configuration is performed
in Sec. III; after evaluating in Sec. IV the impact of the
proposed approach, Sec. V overviews the related works and
Sec. VI concludes the paper.

n.f(1)

n.f(2)

n.f(3)

n.f(k)

n.r(h)

n.r(3)

n

n.r(2)

n.r(1)

...

...

Fig. 1. Fingers and Regnifs in a Chord Ring

II. REVERSE FINGERS

This work proposes a mechanism that, without introducing
any additional communication overhead, exploits the implicit
symmetry knowledge intrinsic to the highly structured Chord
ring. This is done by introducing into the routing table an
additional “entity” beyond successor (consecutive nodes in
the ID space) and fingers (entries at exponential distance in
the ID space). Assuming reader’s familiarity with Chord[1],
we introduce the key idea of this work, i.e., the concept of
reverse finger, with the help of Fig. 1. Adopting the Chord
terminology, we may say that a peer

�
is a finger of � when�

is an entry of � ’s finger table; symmetrically, in this case,
we may say that � is a reverse finger –or, shortly, a regnif –
of
�

, since
�

is being fingered by � . In Chord routing, each
peer � uses its fingers

�
for routing purposes: therefore, each

time
�

handles node � ’s request, then
�

implicitly knows that
� is alive; our proposal is to transform this useful but implicit
knowledge into an explicit and used information: by this, we
mean simply to allow any peer to use its regnifs for lookup
purposes only. However, in the case of failure of a regnif,
we impose the lookup to conservatively fail back to Chord
routing, i.e., the next-hop finger is chosen according to the
original Chord scheme, as will be detailed later.

Since our primary concern is to explore a practical and
feasible approach, an appealing solution is to consider a cache
of soft-state regnif entries, which automatically expire after
a timer � expiration. In order to select reasonable values
for � , let us define the stabilization period � as the time
elapsed among two consecutively scheduled execution of the
stabilization process for two distinct entries in the finger table.
We further define the stabilization round ��� as the time

elapsed among two consecutive stabilizations of the same entry
in the finger table: during this interval, every other entry of
the routing table is stabilized exactly once. Clearly, this time
interval can be expressed as a function on both the stabilization
period � and the number of finger table entries; indicating
with � and � respectively the number of successors and
fingers populating the routing table, the stabilization round
can be written as � � = �	� + ��
�� . Let consider a finger

�
,

whose stabilization process ended at time
�� , and a regnif � ,
added to the regnif cache at the same instant
�� ; intuitively,
the information carried by

�
and � has the same degree of

reliability until the next stabilization of finger
�

, which will
happen, on average, at time
 � + ��� ; thus, selecting � on the
order of ��� will yield a regnif cache which is as accurate as
a finger cache without incurring in any additional stabilization
cost. However, since there is no gain without gambling, we
may decide to raise the regnif grace timer � well beyond ��� :
indeed, on the worst case, the regnif-hop will incur in a timeout
and the lookup will continue to the finger-hop selected by the
original Chord routing.

Let now examine more in details how regnifs can be used
in Chord; the more evident difference of the modified routing
algorithm, which we will call in the following simply as
Regnif, is constituted by the disposal of a larger number
of heterogeneous routing entries, i.e., fingers and regnifs.
However, irrespectively of the kind of next-hop entry chosen,
routing is greedy and, as in the original Chord, subsequent
steps are naturally sorted by decreasing ID-space length: thus,
under this light, the extended cache does not affect the routing
convergence properties and may rather mean a closer next-hop.
A second and more subtle variation lies in the different degree
of trust accorded to fingers and regnifs. Indeed, let consider
for simplicity the iterative flavor of the greedy lookup, and
assume that a node � has a request for a key � . At the first
hop, the node � will: i) choose from its finger table, à la
Chord, the finger ��� � nearest to the destination � ; ii) choose
from its regnif table the entry ��� � nearest to the destination � ;
iii) forward the request to the closest between the finger and
the regnif, i.e. �������������! #"%$'& (*) $'& +���, �.-/��� � , 0�1324, �.-/��� �5, 0617
 .
Without loss of generality let assume that � � , the first-hop node
on the path along � and � , is alive and reachable. From now
on, at the i-th hop, peer �98 performs a similar lookup, replying
to � with a �:�%8�� � 2	�%8;� �<
 pair, and node � will prefer for its
next hop the closest between the finger and the regnif. The
aforementioned different degree of trust accorded to fingers
and regnifs arise upon failure of the latters: indeed, in order to
be conservative, if the contacted regnif entry ��8�� � fails through
a timeout expiration, then the finger � 8 � � is used. This failback
to Chord routing intuitively guarantees that Regnif’s lookup
success probability is not worse1 than Chord’s – which clearly
introduces a tradeoff: the lookup probability is preserved to the

1Apart from the rare, though possible, case where: i) at time =?> , @ forwards
the request for A toward the regnif B , which is closer to A than finger C ; ii)@ acknowledges the failure of regnif B at time =?>�D!EGFIH#JLK?MONPF ; iii) finger C
leaves the system between =	> and =	>�DQERFSH#JTKUM�N*F , but was active at time =	>
and could have possibly, depending on its load, handled @ ’s request

detriment of the number of timeout experienced per lookup.
Finally, a special attention is devoted to the first hop, since
each peer may use a regnif of its own cache. Indeed, upon
failure of the first-hop regnif � , this latter is vetoed2 from
being used for routing purposes, unless its status is refreshed
before the soft-state timer expiration.

III. PRELIMINARY SYSTEM CONFIGURATION

In order to explore the parameter space of Chord and
Regnif into a dynamic environment we performed extensive
simulations considering networks of different sizes: unless
otherwise stated, we will refer to an average network size
of 4096 nodes. Both the intra-node latency and the request
processing time are exponentially distributed, with mean equal
to 50 ms; timeout expiration is set to 500 ms, and request
queues at nodes never overflow. We also take into account
different churn rates: by default, nodes activity and inactivity
times are exponentially distributed with mean equal to 1 hour,
as reported in [2]. Nodes identifier do not persist across sub-
sequent sessions, and are rather chosen uniformly at random.
During its lifetime, each node performs several lookups for
keys selected uniformly at random; lookups are generated
according to a Poisson process and are spaced of 1 minute on
average. Every simulation point corresponds to the average of
five simulation runs with different initial seed; neglecting the
initial transient, the number of lookup performed during each
simulation run is proportional to the network size, specifically
about VR� WYXGV*ZR[for a 4096-nodes networks; notice that this is
done to ensure the simulation time to span over a significant
number of stabilization rounds.

For reasons of space, we limit the analysis to only some of
Chord’s and Regnif’s parameters, namely i) the stabilization
period � , ii) the regnif timer � and iii) the regnif cache size\

.
However, it is known that Chord successors and fingers have

different impact on the system performance: successor pointers
ensure lookup correctness, while finger provides low path
length and latency and are thus tied to lookup performance.
It should be said on this point that it may be possible to
decouple the stabilization procedure, e.g., by lowering the
successor’s stabilization interval in order to enforce better
lookup success rates; however, for the sake of simplicity,
we do not consider the possibility of separately tuning the
fingers and successors stabilization intervals. For brevity, we
will report in the following results only the results achieved
for � = � , indicating with]_^ and

\ ^ respectively a Chord
and a Regnif rings having � = � = ` ; we will consider both
over- provisioning and under-provisioning strategies, where
the threshold for a well dimensioned system is considered
to be the logarithm of the average system size. Besides, we
experimentally verified that i) system performance benefits of
a large number of fingers � , provided that the stabilization

2This is done to avoid to immediately evict a regnif from the cache, since
the timeout may be due to congestion at the peer request queue rather than
actual peer inactivity

 0.85

 0.9

 0.95

 1

103102101
 0

 0.25

 0.5

 0.75

 1
P

{J
oi

n}
 a

nd
 P

{T
ab

le
|E

rr
or

}

1-
P

{E
rr

or
}

Stabilization Interval [sec.]

1-P{Error}
P{Join}
P{Table|Error}

Fig. 2. Stabilization Interval: Lookup Success, Joining and Routing Table
Inconsistency Probabilities

epoch is much smaller than the average peer lifetime: other-
wise, the time needed for the stabilization of the whole finger
table can actually result in performance degradation; ii) as the
number of fingers � increases, system performance are less
sensitive to the successor number � and iii) indiscriminately
raising the successor number � may result in a decrease of
the lookup success rate. These considerations suggest that,
under certain circumstances, over-provisioning can be as bad
as under-provisioning.

A. Chord: Stabilization Interval

The stabilization interval clearly has a massive impact on
Chord system performance: the aim of this section is to
quantitatively investigate its importance. First of all, Fig. 2
depicts three curves as a function of the stabilization interval
� , expressed in seconds, on the x-axis: namely, i) the lookup
success probability, V - aQbdc.�4�<e4�Gf , ii) the probability of suc-
cessfully joining the system, aQbRghe4iU�Lf and iii) the probability
that lookup errors are due to inconsistence of the routing table
entries, aQb*�kj'lnm	op, c��d�<e4�Gf . As expected, as the stabilization in-
terval increase, the information contained in the routing tables
is less correlated with the real system status: as a consequence,
the probability of joining the system aQbRghe4iU�Lf , as well as the
probability of performing a successful lookup 1- aQb4c.�4�4e4�Gf
once joined the system, drop significantly: for instance, about
10% of the lookup succeed when � = V*ZGq seconds. In order
to analyze the aQb*�7jplrm?o', c.�4�<e4�Rf results it must be said that
inconsistent lookups are false-positive (i.e., in the sense that
the lookup reaches a node which is not the true responsible
for the key), while in the other cases the lookup terminates
early (e.g., reaches a dead node with no further possibility to
backtrack). This said, it is interesting to notice that a too small
stabilization interval may result in over-sampling phenomena:
this can be gathered observing the unexpected increase of
routing table inconsistence aQb*�kj'lnm	op, c��d�<e4�Gf for values of �
below sp� W seconds. Besides, the probability of failure in joining
the system keeps lower than the lookup failure probability.

A very interesting observation arise from the observation of

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

103102101
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

P
at

h
Le

ng
th

 [H
op

]

R
et

ra
ns

m
is

si
on

 T
im

eo
ut

	

Stabilization Interval [sec.]

Hop (π95)
Hop (µ)
Rto (µ)

 1

 10

 100

103102101

M
es

sa
ge

s
pe

r L
oo

ku
p

MC = 34.6

M = 56.8

Control
Total

Fig. 3. Stabilization Interval: Path Length, Timeout and Communication Cost

Fig. 3, which depicts the average and t Wvu	w percentile of the
path length (on the left y-axis) as well as the average timeout
number (on the right y-axis), as a function of the stabilization
interval. It can be gathered that, as expected, the average
timeout number increases as � increases, whereas, rather
counter-intuitively, both the average and the t WRu	w percentile
of the path length actually decrease as � increases. This,
rather than being an index of better performance, reflect the
actual limitation of the network horizon as seen by the peers:
indeed, the longer the path, the higher the probability to incur
in several timeouts and, eventually, the higher the probability
for the search to fail, as evidenced in Fig. 2: in other words,
by increasing � longer paths simply “vanish” from the system.
Finally, let consider the Chord communication complexity,
considering two distinct contributions: i) the communication
overhead, which is expressed as the average number of control
messages xzy per lookup and ii) the pure-lookup messages
x|{ , i.e., the average number of messages needed to route
on the ring, purged from the Chord maintenance messages.
The total cost of a lookup can be then expressed as the total
number of messages x = x y + x { seen, on average, by each
lookup. On the one hand, x y represents the pure Chord
overhead and, beside the dependence on the path length, is
inversely proportional the stabilization interval � ; on the other
hand, xz{ reflects the system performance and, in the case of
iterative lookups, is equal to twice the average path length
plus backtracking-hops contributions due timeout expirations.
It should be said that these two contributions are tightly
correlated: indeed, a higher maintenance cost x}y may result
in better path length and timeout performance, eventually
lowering the number of messages x}{ needed per lookup.
With these considerations in mind let observe the inset of
Fig. 3, which depicts the communication overhead, expressed
in terms of x and x y , as a function of the stabilization
interval. As expected, the overhead x y decreases linearly as
the stabilization interval increases; besides, the slope of total
number of exchanged messages, x is also affected by two
contrasting contributions (i.e., the decreasing path length and
the increasing timeout number) and shows a slower decrease.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

104103102101

R
10

/C
10

 G
ai

n:
 O

ve
rh

ea
d

an
d

P
{E

rr
or

}

Regnif Timer [sec.]

Average
Peer

Lifetime

P{Error}
ML
M

Fig. 4. Regnif Timer: Lookup Success and Communication Overhead Gain

In the following, we set the default value of the stabilization
interval to be � =10 seconds as a good tradeoff among the
success probability, path length timeout and communication
overhead (as evidenced in the picture, the control messages
account for x y / x = ~RZG�).

B. Regnif: Soft-State Timer

To investigate the impact of the Regnif soft-state timer � ,
we consider an under-provisioned

\ ��� ring, using furthermore
a finite Regnif cache, on a 4096-nodes network. Performance
will be normalized over the results achieved on a Chord ring
under the same configuration: it must be pointed out that
]_�;� is considered to be well provisioned only for 1024-nodes
networks. Fig. 4 depicts the error percentage decrease and
the communication overhead gain, normalized over the results
achieved by Chord under the same configuration, as a function
of � . As expected, the aQbdc��d�<e4�Gf gain is more evident as
� grows, since Regnif performance is lower-bounded by the
standard Chord-routing failback: in this scenario, up to 60%
of the lookup errors may be avoided by the introduction
of the Regnif cache. When, conversely, the timer � grows
beyond the peer lifetime, the performance gain decreases
almost beyond perception: in this case, some “useless” entries
are wasting the finite regnif cache space. It should be noted
that communication overhead decreases significantly: thus, not
only the Regnif routing comes with no additional overhead, but
can also actually lower, of about 30% in this experiment, the
total communication cost x ; this is essentially a consequence
of the path length and network load reduction, as x { testify.

Fig. 5 depicts the
\ �;�4�] �;� ratio of the average timeout

number (on the right y-axis), path length and lookup duration
(on the left y-axis) as a function of the regnif timer � . As
expected, the introduction of the regnif cache yields to a
significant decrease of the path length at the price of a non-
negligible increase of the timeout number. It is interesting to
notice how the tradeoff between the path length and timeout
drives the temporal duration of a lookup. When ���.V*Z'q sec-
onds, the lookup duration is negatively affected by the massive
timeout increase; conversely, when the increase of the timeout

 0

 0.2

 0.4

 0.6

 0.8

 1

104103102101
 1

 10

R
10

/C
10

 G
ai

n:
 P

at
h

Le
ng

th
 a

nd
 D

ur
at

io
n

R
10

/C
10

 T
im

eo
ut

Regnif Timer [sec.]

Timeout
Path Length
Duration

Fig. 5. Regnif Timer: Pathlength Gain and Timeout Increase Tradeoff

number is modest, e.g., ���.VdZRq seconds, the lookup duration
actually benefits of the path length reduction. Intuitively, the
decrease of the path length translates into lighter load on the
network, which in turns yields, on average, to shorter request
queues for each peer: this compensate the increase of the
timeouts number and eventually entails the reduction of the
lookup duration. In the following we will set the soft-state
timer to one of the references � = bGV*ZG�d2PVdZ q f seconds indicated
in Fig. 4: the lower timer choice prefers system stability, while
the higher timer follows from the belief that the higher bet,
the higher can possibly be the gain.

C. Regnif: Cache Size

Let investigate the effects of the Regnif cache size when
the Regnif timer is set to ����bRVdZ � 2*V*ZRq4f seconds; as before,
network size is 4096-nodes and peers form a

\ �;� ring.
To avoid cluttering the figures, we present in Fig. 6 only the

timeout degradation and the path length gain as a function of
the regnif cache size on the x-axis, for different values of
the regnif timer � . The timeout degradation is expressed as
the Regnif over Chord ratio

\ ���<�] ��� of the average timeout
number; symmetrically, the path length gain is expressed as
ratio] �;�<� \ �;� of the average path length. There are two main
observation on this regard: first of all, the regnif cache may
be extremely beneficial into under-provisioning scenarios, al-
though as observed early the timeout degradation may tradeoff
the path length gain. Secondly, the effect of the cache size
saturates for both timer � values: i.e., adding more regnif yield
no further gain nor degradation. Therefore, in the following we
select the cache size to be 100 elements large.

IV. REGNIF PERFORMANCE EVALUATION

This section compares Chord versus Regnif performance.
Inspecting the impact of the network size and the peer activity
model, we focus on on user-centric metrics such as the
lookup success rate, path length and duration, timeout number.
Conversely, we will no longer directly refer to system-wide
metrics; indeed, it should be noted that both the aQbvghe4i��Lf
probability and the the control messages overhead x�y are

 1

 2

 3

 4

 5

 6

 7

 1024 512 256 128 64 32 16 8 4 2
 1

 1.5

 2

 2.5

 3

 3.5
R

10
/C

10
 T

im
eo

ut
 D

eg
ra

da
tio

n

C
10

/R
10

 P
at

hl
en

gt
h

G
ai

n

Regnif Cache Size

T=102 s: Rto
T=102 s: Hop
T=103 s: Rto
T=103 s: Hop

Fig. 6. Regnif Cache Size: Timeout Degradation and Pathlength Gain

unaffected by the use of Regnif for solely lookup purposes,
as in our case. However, as we previously observed, many
of these metrics tradeoff and, being very complex to give a
complete evaluation of the quality of the offered service, we
need to distinguish at least a sort of ranking between them. We
argue that, even though the duration of a lookup is extremely
important to the user perception, nevertheless this should be
weighted against both i) the user reaction times, which are
in the order of unit to tens of seconds and ii) the subsequent
download time, which is likely to be bigger than the lookup
duration for a wide range of applications. Therefore, we are
allowed to state that the success probability of the lookup
itself is more important than its duration: in other words,
guaranteeing the resource availability is more important than
bounding the delay of its localization. Similarly, it could be
argued that the number of hops in the path may be even more
critical than the number of timeouts: indeed, incurring in a
timeout does not necessary yield to lookup failure nor to longer
lookups; moreover, as we previously noticed, shorter paths
may translate into lower network load, which is beneficial to
the whole system.

A. Network Size Effects

In this scenario we analyzed, for network size in the range
from V*ZR��� to ~GWvWv�v~ peers, the performance of different provi-
sioning policy; specifically, we considered i) over-provisioned
] � [2

\ � [systems, where thus � = � = �#�R� � �?~RWRW��v~G
 , ii) well-
provisioned systems with � = � = �I�v� � � Peer
 and iii) under-
provisioned] ��� 2 \ ��� systems. It should be noted that the well-
and over-provisioning strategies overlap for the largest network
size, whereas the well- and under-provisioned cases overlap for
the smallest network size. Fig. 7 shows the Regnif and Chord
lookup error percentage as a function of the network size, in
the over- and under- provisioned cases only, thus providing
a lower and upper bound to the average system performance.
As a first consideration, the drastic degradation of the lookup
probability for network sizes above 8192 peers is partly due
to the choice of a small Chord finger base l���� . This is
especially true for under-provisioned systems: for example,

 0

 2

 4

 6

 8

 10

 12

 16384 8192 4096 2048 1024

E
rr

or
 %

Network Size [Nodes]

R16
R10
C16
C10

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 65536 16384 4096 1024

P
at

h
Le

ng
th

 [H
op

s]

Fig. 7. Network Size: Regnif vs Chord Error Probability and Path Length

the use of l���Vd~ on a 16384-nodes network more than
halves the lookup errors in the] �;� case; conversely, for
network sizes below 4096 nodes, changing the base yielded
no significant performance improvement: this suggest that, at
least on large networks, in order to ensure good performance
a careful tuning of the finger base is required. Secondly, and
even more interestingly, it should be noted that the Regnif
solution provides remarkable performance benefits for under-
provisioning scenarios: e.g., the performance of

\ �;� and]�� [
are similar for a 4096-nodes network. This means that, as
expected, the Regnif cache is able to naturally cope with
significant variation of the system size. Furthermore, it should
be recalled that these results refer to a relatively small regnif
cache

\ ��V*ZvZ : extending the cache size may yield further
gain. The inset of Fig. 7 depicts the average path length as a
function of the network size for different routing flavors and
provisioning strategies. First of all, the path length increases
from small to moderate network sizes; then, for network larger
than 16834 nodes, the path length decreases: however, as we
previously noticed, this apparent decrease must be coupled
to the dramatic increase of the lookup failure. Secondly, the
Regnif path length is evidently less affected, with respect
to Chord, by the increase of the network size – which
again confirms the effectiveness of the regnif cache. Finally,
intra-system differences are less evident for different Regnif
configurations (i.e.,

\ ��� and
\ � [) with respect to the Chord

case, where under- and over-provisioning strategies exhibit a
significant performance gap .

Finally, Fig. 8 depicts the average timeout number as a
function of the network size. Interestingly, the relative order
of the performance curves is the opposite in the Chord
and Regnif cases for different provisioning strategies. This
is easily explained considering that the use of Regnifs will
likely higher the timeout probability: as a consequence, an
under-provisioned Regnif

\ ��� ring will be more likely to use
its Regnifs than an over-provisioned

\ � [one, thus raising
the average number of timeout per lookup. Secondly, in the
Chord case, the over-provisioning strategy does not entails a
reduction of the timeout number per se for all network sizes,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 65536 32764 16384 8192 4096 2048 1024

A
ve

ra
ge

 T
im

eo
ut

 N
um

be
r

Network Size [Nodes]

Regnif R16
Regnif Rlog2(N)
Regnif R10

 0.05

 0.06

 0.07

 0.08

 65536 8192 1024

Chord

Fig. 8. Network Size: Regnif vs Chord Average Timeout Number

as testified by the]�� [curve: the increase of the stabilization
epoch in the]�� [case entails a lower accuracy of the larger
finger cache and is responsible for an higher number of
timeouts experienced by 8192-peers or smaller networks.

B. Churn Model Effects

Eventually, let investigate the impact of the node lifetime
on the system performance; let us anticipate that, considering
an under-provisioned 4096-peers network, Regnif outperforms
Chord under both fast and slow churns.

Fig. 9 depict the lookup failure percentage (on the right
y-axis) and the average path length (on the left y-axis) as
a function of the peer lifetime, expressed in seconds, on
the bottom x-axis; besides, being the lookup rate constant
and equal to 1/60 Hz, the top x-axis report the number of
lookup effectuated per node. As the peer lifetime increases,
both systems achieve more stable results: the lookup failure
probability decreases and, under this light, the path length
increase reflects a widening of the network horizon as seen
by the average peer. As a consequence, the average lookup
duration increases as well, whereas the decrease of the t WRu	w
percentile of the lookup duration has instead to be coupled to
the reduction of the timeout number.

V. RELATED WORKS

Since Chord’s [1] first description many modifications to
the protocol have been proposed and analyzed, some of which
we will very briefly summarize here. For example, [3] address
more sophisticated (and demanding) stabilization routines with
stronger guarantees, while Koorde [4] proposes the combi-
nation of a ring structure with the low-diameter De Brujin
graphs. In [5] a degree optimal version of Chord is obtained
applying the small-word concept of neighbors of neighbors
(NoN), first introduced in the DHT context by [6]. Also, [7]
combines the benefits of the NoN approach with a different
intra-finger distance distribution following the Fibonacci se-
ries, while bidirectional optimal routing scheme is presented
in [8]. Finally, proximity matter have been considered, e.g.,

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 2000 4000 6000 8000 10000 12000

 1

 10

 20 40 60 80 100 120 140 160 180 200

P
at

h
Le

ng
th

 [h
op

s]

E
rr

or
 %

Churn Speed: Node Lifetime [sec]

Average Lookup per Node

R10: Hop
R10: Error %
C10: Hop
C10: Error %

Fig. 9. Node Lifetime: Error Probability and Average Path Length

in [9] which investigated the benefits brought by topology-
aware mechanism on the top of different DHTs, whereas load
balancing issues have been addressed in [10].

VI. CONCLUSION

This paper proposed a zero-cost modification to Chord rout-
ing, based on eavesdropping of the request handled for other
peers, which is viable and easily implementable. Through
extensive simulation on a wide range of dynamic scenarios,
we showed that the proposed technique is able to bring
performance benefits, in terms of shorter path length and
latency, at the price of the increase of the timeout number
experienced by lookups.

REFERENCES

[1] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F.
Dabek and H. Balakrishnan, “Chord: A Scalable Peer-to-peer Lookup
Protocol for Internet Applications,” IEEE/ACM Transactions on Net-
working, Vol. 11, No. 1, pp. 17-32, Feb. 2003.

[2] S. Saroiu, P. Gummadi and S.D. Gribble, “A Measurement Study of
Peer-to-Peer File Sharing Systems,” In Proc. of Multimedia Computing
and Networking (MMCN), San Jose, CA, Jan. 2002

[3] D. Liben-Nowell, H. Balakrishnan and D. Karger, “Observations on
the Dynamic Evolution of Peer-to-Peer Networks,” In Proc. of the 1st
International Workshop on Peer-to-Peer Systems (IPTPS), Cambridge,
MA, Mar. 2002

[4] F. Kaashoek and D. R. Karger, “Koorde: A Simple Degree-Optimal
Hash Table,” In Proc. of the 2nd International Workshop on Peer-to-
Peer Systems (IPTPS), Berkeley, CA, Feb. 2003

[5] G. S. Manku, M. Naor and U. Wieder, “Know thy Neighbor’s Neighbor:
The Power of Lookahead in Randomized P2P Networks,” In Proc. of
the 36th Symposium on Theory of Computing Chicago, IL, Jun. 2004

[6] G. S. Manku, M. Bawa, and P. Raghavan, “Symphony: Distributed
Hashing in a Small World,” In Proc. of the 4th USENIX Symposium
on Internet Technology and Systems (USITS), Seattle, WA, Mar. 2003

[7] G. Cordasco, L. Gargano, M. Hammar, A. Negro and V. Scaran,
“Non-uniform deterministic routing on F-Chord,” In Proc. of the 1st
International Workshop on Hot Topics in Peer-to-Peer Systems (Hot-
P2P04), Volendam, The Netherland, Oct. 2004

[8] P. Ganesan and G.Manku, “Optimal routing in Chord,” In Proc. of the
15th ACM Symposium on Discrete Algorithms, New Orleans, Jan. 2004

[9] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker and
I. Stoica, “The Impact of DHT Routing Geometry on Resilience and
Proximity,” In Proc. of SIGCOMM, Karlsruhe, Germany, Aug. 2003

[10] B. Godfrey, B. Lakshminarayanan, S. Surana, R. Karp and I. Stoica,
“Load Balancing in Dynamic Structured P2P Systems”, In Proc. of IEEE
INFOCOM, Hong Kong, Mar. 2004.

